

Device Pairing Based on Adaptive Channel Fluctuation Control for
Large-scale Organizations

Takashi Oshiba and Hideaki Nebayashi
Service Platforms Research Laboratories, NEC Corporation, Japan

{oshiba@cp, nebayashi@ap}.jp.nec.com

Abstract
We are developing device pairing methods that

enable a user to establish two devices, such as a mobile
phone and a PC as a device pair. In our previous
developed method, a user can create a device pair by
simultaneously clicking the pairing buttons shown on
their screens. However, when the system handles many
users, clicks from different users could overlap,
resulting in request collisions.

In this paper, we propose a device pairing method
that can keep the collision probability under a
permissible limit by using multiple pairing buttons. In
this method, a single pairing button with a numeric
identifier is shown on a mobile phone, and multiple
buttons with different numeric identifiers are shown on
a PC. First, a user chooses the button on the PC with
the same identifier as the one on the phone. Then, the
user simultaneously clicks the single button on the
phone and the corresponding button on the PC. A
device pair is created based on not only the
simultaneity of the two clicks but also the
correspondence between the two buttons’ identifiers.

If too many pairing buttons are shown on a PC, it
will be bothersome for the user to choose one button
from many candidates: the smaller the number of
pairing buttons shown on a PC, the simpler the user
operation. To ensure ease of user operation, our
method adaptively fluctuates the number of pairing
buttons shown on a PC, i.e., the number of device
pairing channels, according to the latest amount of
pairing requests from users.

1. Introduction
These days, many business users use multiple

devices, such as mobile phones and PCs during a
working day [1]. If the multiple devices could work
cooperatively, the productivity of the business users
would be improved. Let’s consider potential scenarios.
(a) Showing e-mails only from a phone caller on a

phone callee’s PC: In this scenario, when user A
makes a phone call to user B and they begin to

talk with their mobile phones, recent e-mails sent
only from user A to user B are automatically
shown on a user B’s PC. With this cooperative
behavior between the user B’s mobile phone and
the user B’s PC, user B can easily find the recent
e-mails from user A without searching them
manually from a lot of past e-mails sent from
various other users. Hence, they can immediately
begin discussing about a user A’s recent e-mail.

(b) PC-to-PC Web conferencing during a phone-
to-phone audio conversation: In this scenario,
when user A and user B begin to talk with their
mobile phones, a user A’s PC and a user B’s PC
launch a Web conferencing application
automatically and connect each other. With these
cooperative behaviors among these four devices,
user A and user B can immediately begin
discussing about business documents stored in
their PCs, e.g., sales reports and/or product
specifications, with the Web conferencing
application.

In both these scenarios, a mobile phone and a PC
must be established as a pair by a device pairing
process. This is an essential aspect of cooperative
multi-device scenarios.

We are developing device pairing methods [2]. The
new method presented in this paper is intended to be
used in large-scale organizations such as large
enterprises. It aims for good scalability to handle
numerous pairing requests from the many users in a
large-scale organization and for low-cost deployment
of the device paring system in a large-scale
organization. Assuming that every user performs ten
device pairings per day on average in an organization
with over several ten thousand users, the system must
be able to process several hundred thousand pairing
requests per day. Moreover, a large-scale organization
usually owns various devices such as mobile phones,
PCs, and personal digital assistants (PDAs) and various
networks such as wireless and wired ones. Thus, the

need to modify existing devices or networks when a
device pairing system is deployed should be minimized.

In this paper, we propose a novel device pairing
method that can achieve both sufficient scalability and
low-cost deployment in large-scale organizations.

2. Problems and Requirements of Device
Pairing

2.1. Problems of Conventional Methods
There is a lot of prior work on device pairing that

mainly focused on mobile phones and/or small sensors
in wireless networks.

The movement-based method [3] automatically
creates a pair of small sensors based on acceleration
data from the sensors’ accelerometer. Media access
control (MAC) frames are broadcast in a wireless
network to exchange acceleration data, and a device
pair is then created. However, if there are too many
sensors in the wireless network, the number of
broadcasts is large, so MAC frames frequently collide.
Furthermore, the broadcast range is limited to just a
single local area network (LAN). Thus, the maximum
number of sensors that could be handled was reported
to be only 100 [3].

Devices with built-in accelerometers can be paired
by simultaneously shaking both devices [4]. However,
the devices must be equipped with special hardware (in
this case an accelerometer). The same problem exists in
[3]. In BEDA [5], a device pair is created by
sequentially pushing the devices’ buttons seven times.
However, special software must be installed in the
devices in advance. Moreover, in BEDA, the two
devices must use the same wireless protocol; therefore,
it is not possible to pair with Bluetooth device with an
IEEE 802.11b/g device, for example. In SyncTap [6], a
device pair is created by simultaneously pushing the
devices’ buttons. However, SyncTap has the same two
problems as BEDA. Seeing-Is-Believing [7], which
uses a two-dimensional barcode and a camera, also has
the same two problems as BEDA.
2.2. Requirements for Device Pairing

Given the problems with the conventional methods,
we identified two requirements for device pairing in a
large-scale organization.
(1) Limit on collision probability: The collision

probability of pairing requests from users must be
kept below a certain limit even if the frequency of
pairing requests increases as the number of users
increases.

(2) Low-cost deployment: The cost of deploying a
device pairing system must be low even if there
are various types of devices and networks. No
additional special hardware or software must be
needed for the large number of devices in a large-
scale organization. The system must be

independent of the type of network, such as
wireless or wired.

3. Proposal of a Scalable and Adaptive
Device Pairing Method
Here, we propose a novel device pairing method

that satisfies the two requirements described above. It
is an extension of our previous method [2], which we
hereinafter refer to as the basic method. Our method
comprises a multi-channel-based device pairing control
and an adaptive channel fluctuation control, which are
described in Sections 3.2–3.4 and Section 3.5,
respectively. The former ensures scalability and the
latter ensures ease of user operation.
3.1. Outline of Basic Method

Here, we outline the basic method as an introduction
to the multi-channel-based device pairing control.

In the basic method, when a user simultaneously
clicks pairing buttons (i.e., buttons of a graphical user
interface) on the screens of a mobile phone and a PC,
two pairing requests are sent—one from each device—
to a device pairing server (DPS). When the first request
arrives, the DPS starts an acceptance timer. After a
predefined time, e.g., 1.0 seconds, the acceptance
period ends. If the DPS has received another pairing
request within the acceptance period, it creates a device
pair. Namely, in the basic method, a pair is created on
the basis of only timestamp information. Consequently,
if requests from two different users overlap, the DPS
will receive four pairing requests. As a result, a device
pairing collision will occur and the DPS will be unable
to understand the relationship between the two users
and four devices.

In the basic method, even if a collision occurs, the
users can establish the correct pairs in an intuitive
manner. After the end of the acceptance period, the
system draws a still image on each screen. If the
images on a user’s two devices are the same, he/she
can establish the pair by clicking the OK button. On the
other hand, if the image on the mobile phone does not
match the one on the PC, it means that the system has
guessed wrong about the pairing. The user can correct
the mismatched pair to the desired one by changing the
image on the PC so that it matches the one on his/her
mobile phone. However, this requires the user to make
a bothersome manual change and could lead to security
issues if users maliciously or accidently make the
wrong choice. Thus, the first objective is to prevent
collisions in order to achieve easy user operation.
3.2. Multi-channel-based Device Pairing

Control
In our method, a pair is created on the basis of not

only timestamp information, but also identifier
information added to the pairing request to improve
scalability. When a user begins a device pairing

operation, a single pairing button with an identifier
chosen by the DPS is shown on the phone screen, and
multiple pairing buttons each with an identifier are
shown on the PC screen. On the PC, the user chooses
the button with the same identifier as the one on the
phone from the multiple candidates.

The protocol used in our method is HTTP; therefore,
arbitrary devices with only a Web browser can be used.
3.3. User Operation

A user can begin a device pairing operation by
accessing the DPS and opening a pairing Web page.

In the basic method, a single pairing button is shown
on the phone screen. In our method, on the other hand,
a button with a numeric identifier is shown on the
pairing Web page on phone’s screen. The value of the
identifier is chosen by the DPS from 1 to S, where S is
a positive integer. In the basic method, the PC also
shows one pairing button, while in our method the PC
shows a pairing Web page having S pairing buttons
with different numeric identifiers (Figure 1).

Figure 1: User operation.

In our method, the user simultaneously clicks the
single button on the phone and the corresponding
button on the PC. Each device then sends a pairing
request to the DPS, which starts the device pairing
process.
3.4. System Architecture

The architecture of a device pairing system using
our method is shown in Figure 2. The parallel degree
optimizer determines the number of buttons that will be
shown on a PC, i.e., S. The identifier selector chooses a
numeric identifier that will be shown on a phone. For
every request from a pairing Web page on a phone, the
identifier selector chooses a numeric identifier from 1
to S by round-robin scheduling. Each time-based
pairing channel corresponds to a device pairing channel
and executes the basic method, i.e., device pairing
based on timestamp information, as described in
Section 3.1. The number of channels that can be active

concurrently, i.e., the number of device pairing
channels, is set to S by the parallel degree optimizer.

When a user simultaneously clicks pairing buttons
on a mobile phone and a PC, the identifier-based load
balancer receives two pairing requests that include
identifiers. It assigns them to a time-based pairing
channel on the basis of the identifier in the requests.
After the time-based pairing channel has established
the phone and PC as a pair, the pairing data is stored in
the pairing storage.

Figure 2: Architecture of system using our method.

Since the identifier selector chooses the identifier by
round-robin scheduling, when user A’s mobile phone
displays a pairing Web page after user B’s mobile
phone had displayed one, the identifiers shown on
these two phones certainly differ. Hence, even if the
two users’ clicks overlap in time, the identifier-based
load balancer can distinguish the two users by checking
the identifiers. Since the pairing requests from two
users are assigned to different time-based pairing
channels, collisions can be avoided.
3.5. Adaptive Channel Fluctuation Control

If too many pairing buttons are shown a pairing
Web page on a PC, choosing a button from a lot of
candidates is bothersome for the user; therefore, fewer
pairing buttons on a PC leads to simpler user operation.
Consequently, the relationship between scalability and
ease of user operation is a trade-off.

To balance this trade-off, we present the adaptive
channel fluctuation control which can improve ease of
user operation in the multi-channel-based device
pairing control.

The adaptive channel fluctuation control
dynamically adapts to the temporal variation in the
amount of pairing requests from users and adaptively
minimizes the number of time-based pairing channels S,
which is also the number of pairing buttons shown on a
PC, to keep the collision probability below a

Identifier-
based load
balancer

1st time-based
pairing channel

Identifier selector

Pairing
storage

2nd time-based
pairing channel

S th time-based
pairing channel

Device pairing server
(DPS)

Parallel degree optimizer
Access

frequency
storage

Numeric identifier = 2

2 3 1 2

Simultaneously click the two pairing buttons
having the same numeric identifier

Simultaneously click the two pairing buttons

Our method

Basic method

(for S = 3)

Pairing Web page

permissible limit. Consequently, both scalability and
ease of user operation can be ensured.
3.5.1. Model of Multiple Device Pairing Channels

Here, we model our multiple device pairing
channels by using queuing theory. We assume that the
arrival process of pairing requests obeys a Poisson
distribution. The service time is always fixed to the
acceptance period, so the service time distribution is a
degenerate distribution. The number of servers is S.
Hence, our method can be expressed by the M/D/S(0)
loss model. If S = 1, our method can be expressed by
the M/D/1(0) loss model, which is the same as the basic
method.

When all the servers in the M/D/S(0) loss model are
busy, i.e., providing service, if another request arrives
while all the servers are busy, blocking occurs. Thus,
the blocking probability corresponds to collision
probability SB . In our method, a collision occurs only
if the DPS receives pairing requests from S + 1 or more
users during an acceptance period. For example,
assuming that S = 9 and the acceptance period is 1.0 s,
a collision occurs only if ten or more users send pairing
requests during this 1.0-s period; therefore, our method
can make collisions quite rare.
3.5.2. Principle of Adaptive Channel Fluctuation

Control
The parallel degree optimizer periodically observes

the number of users who have sent pairing requests as
the access frequency λ and stores λ into the access
frequency storage shown in Figure 2. Namely, λ is
half the number of pairing requests. Let maxB be the
maximum permissible value of collision probability

SB . The parallel degree optimizer calculates SB on the
basis of λ and finds the minimum S that satisfies

maxBBS < as the optimal number of time-based
pairing channels Sopt (details given in Section 3.5.4).
As λ temporally varies, Sopt is adaptively changed. By
proactively increasing Sopt before SB exceeds maxB ,
the system can decrease SB and hence certainly
prevent SB from exceeding maxB .
3.5.3. Smoothing and Prediction of Access

Frequencies
Since λ tends to include accidental error, if we

calculate SB directly from λ for every observation,
Sopt may become unstable. Accordingly, we deal with
the periodically observed values of λ as time series
data, and we can remove the observed error by
smoothing the time series data. Moreover, through the
smoothing, we calculate nextλ as the predicted value of
λ at the next observation. Sopt can be stabilized by

calculating SB from nextλ . By using nextλ , we can
proactively control Sopt before SB exceeds maxB .

We use exponential smoothing based on Brown’s
linear trend model [8], which has better pursuit
performance against the trend variation of time series
data than a simple moving average. We calculate nextλ
by using Equation (1).

{ },)()(
1

)()(2

),1()1()()(
),1()1()()(

),1()2(,)1(

2121

212

11

11

tftftftf

tftftf
tfttf

fnullf

next −
−

+−=

−−+⋅=
−−+⋅=

==

α
αλ

αα
αλα
λ

 (1)

where)(tλ is the latest value of λ in the periodical
observations and α is a smoothing factor (10 <<α).
The closer α approaches 1, the greater the influence of
the recently observed value.
3.5.4. Optimal Number of Device Pairing Channels

We use the Erlang-B formula [9] to calculate the
collision probability SB (Equation (2)).

()

()∑
=

= S

n

n
next

S
next

S

n
h

S
h

B

0 !

!
λ

λ

, (2)

where the constant value h is the duration of the
acceptance period. By using Equations (1) and (2), the
parallel degree optimizer finds the minimum S that
satisfies maxBBS < as the optimal number of time-
based pairing channels Sopt. Thus, our method
dynamically adapts to the temporal variation in access
frequency λ , and the number of time-based pairing
channels, i.e., the number of pairing buttons shown on
a PC, is always optimized to Sopt. Hence, scalability
and ease of user operation can be ensured.
3.6. Implementation

We implemented a prototype device pairing system
that uses our method. The DPS is implemented as a
Web application server. We used voice-over-wireless-
LAN (VoWLAN) mobile phones that each had a Web
browser, e.g., N906iL [10], and PCs with Microsoft
Internet Explorer as client devices. A snapshot of our
prototype system is shown in Figure 3. Since a Web
browser does not need to support JavaScript or cookies,
various devices with Web browser other than mobile
phones or PCs, e.g., PDAs, can be used in an out-of-
box manner. Since HTTP is used as a network
communication protocol, our system is independent of
the type of network, such as wireless or wired. Hence,
our system can be deployed with low cost into large-
scale organizations.

Figure 3: Snapshot of our prototype system.

4. Evaluation
4.1. DPS Scalability

We evaluated the scalability of the DPS by
analyzing the relationship between Sopt and the
maximum number of device pairings per day n . We
assumed that λ did not temporally vary and that all
users performed ten device pairings per 24 hours on
average. We also assumed that maxB was set to 2.0%
and h to 1.0 s as server-side settings. maxB = 2.0%
means that a user will encounter one collision in 50
device pairings on average. As described in Section 3.1,
even if a collision occurs, a desired pair could be
created. Moreover, even if a mismatched pair is created
as a result of the collision, the user can manually
correct the mismatched pair to the desired one.
Accordingly, we believe the value of maxB is
reasonable. We restricted the maximum value of Sopt to
9 on the basis of Miller’s experimental results for
human short term memory [11].

The analytic results obtained using the relationship
)600,324(×⋅= hnnextλ and Equation (2) are shown in

Figure 4.

0
50,000

100,000
150,000
200,000
250,000
300,000
350,000
400,000

0 1 2 3 4 5 6 7 8 9 10
Number of pairing buttons S opt

M
ax

im
um

 n
um

be
r o

f d
ev

ic
e

 p
ai

rin
gs

 p
er

 d
ay

 n

Figure 4: DPS scalability.

For Sopt = 9, the DPS can processes a maximum of
about 375,000 device pairings per day; that is, about
37,500 users can be supported. Hence, we confirmed
that the multi-channel-based device pairing control has

sufficient scalability to handle organizations with
several ten thousand users. Since the basic method was
reported to be able to processes a maximum of about
1700 requests per day [2]–––this numerical value is the
same as with our method for Sopt = 1, we confirmed
that our method’s scalability is approximately 220
times that of the basic method.
4.2. Proactive Behavior of Adaptive Channel

Fluctuation Control
We validated the proactive behavior of the adaptive

channel fluctuation control described in Section 3.5.
We analyzed the relationship among λ , Sopt, and SB
with a simulation. We increased λ from 0 time per day
to 375,000 times per day. Note that λ is dynamically
changed while λ was static in Section 4.1. We
assumed that maxB was set to 2.0% as a server-side
setting. The simulated results are shown in Figure 5.
We confirmed that even if SB rises as a result of an
increase in λ , SB is kept below maxB by proactively
adding 1 to Sopt before SB exceeds maxB .

0
1
2
3
4
5
6
7
8
9

10

0 100,000 200,000 300,000
0.0

0.5

1.0

1.5

2.0

2.5
Sopt Bs

Figure 5: Proactive behavior of adaptive channel

fluctuation control.

5. Discussion
In this section, we discuss several issues pertaining

to our method and their solutions.
5.1. Network Delay and Jitter

Since large-scale organizations usually own a lot of
interconnecting LANs, pairing request packets are
exchanged via multiple routers between the DPS and
client devices. Furthermore, the route between the DPS
and a mobile phone and the route between the DPS and
a PC are different in the case that the mobile phone
connects to a wireless network while the PC connects
to a wired network. Consequently, pairing request
packets suffers the influence of diverse network delay
and jitter.

Since a pair of devices is created on the basis of
comparing the reception timestamps of two paring
requests at the DPS, if the network delay and/or jitter

λ

Bs (%)Sopt

Bmax

Simultaneously click the
two pairing buttons having
the same numeric identifier

become sufficiently larger than the acceptance period,
pair creation might become difficult.

This problem can be solved by introducing clock
synchronization between the DPS and client device to
absorb the influence of network delay and jitter. By
measuring the time difference between the client
device and itself, the DPS can calculate when the
button was clicked at the client device by using the
measured time difference as an offset applied to the
request reception timestamp. Hence, a device pair can
be created by comparing not reception timestamps, but
click timestamps.

This solution can be implemented using an HTTP-
based time synchronization protocol, e.g., SNTP [12]
over HTTP or HTP [13]. While the client device is
opening a pairing Web page, the DPS can measure the
time difference between the client device and itself by
using one of these protocols.
5.2. Protection from Attacks

To make device pairing secure, the device pairing
system must be protected against attacks such as
distributed denial-of-service (DDoS) attacks and man-
in-the-middle (MitM) attacks. If attackers continually
send massive numbers of requests from a large number
of mobile phones and PCs, the collision probability
could be extremely large, resulting in a successful
DDoS attack. However, existing countermeasures for
DDoS attacks, e.g., [14][15], can solve this problem.

In our method, MitM attacks can be prevented by
simply using HTTPS [16] as a network communication
protocol between the DPS (Web application server)
and client device Web browser. Since the HTTPS
server certificate issued by a trusted certificate
authority can guarantee that the DPS is the genuine
server, an MitM attacker’s server cannot pretend to be
the DPS. Thus, the MitM attacker’s server cannot relay
any device pairing packets between the DPS and a
client device.

6. Conclusion and Future Work
We proposed a device pairing method which can

keep the collision probability of pairing requests below
a permissible limit by using multiple pairing buttons.
Through an evaluation, we confirmed that this method
has approximately 220 times the scalability of a
conventional method and that it has sufficient
scalability for deployment in large-scale organizations.
The protocol used in our method is HTTP; therefore,
arbitrary devices with only a Web browser can be used
in an out-of-box manner and our system is independent
of the type of network, such as wireless or wired.
Hence, our system can be deployed at low cost in
large-scale organizations.

We plan to prove the practicability of our method
through a field trial in a real corporate environment.

We also plan to improve the scalability further toward
massive scale consumer services.

References
[1] Unisys News Release, “Forty-nine percent of employees

now use multiple devices – primarily mobile ones – over
the course of a typical workday,” August 28, 2007,
http://www.unisys.com/about__unisys/news_a_events/08
288810.htm

[2] T. Oshiba et al., “Ad-hoc Endpoint Pairing based on
Simultaneous Clicking for Ubiquitous
Communications,” Proc. of SAINT 2008, pp. 467–470,
2008.

[3] R. Marin-Perianu et al., “Movement-based Group
Awareness with Wireless Sensor Networks,” Proc. of
Pervasive 2007, pp. 298–315, 2007.

[4] R. Mayrhofer et al., “Shake Well Before Use:
Authentication based on Accelerometer Data,” Proc. of
Pervasive 2007, pp. 144–161, 2007.

[5] C. Soriente et al., “BEDA: Button-Enabled Device
Association,” Proc. of IWSSI 2007, 2007.

[6] J. Rekimoto, “SyncTap: Synchronous User Operation
for Spontaneous Network Connection,” Personal and
Ubiquitous Computing, Vol. 8, Issue 2, pp. 126–134,
2004.

[7] J.M. McCune et al., “Seeing-Is-Believing: Using
Camera Phones for Human-Verifiable Authentication,”
Proc. of 2005 IEEE Symposium on Security and Privacy,
pp. 110–124, 2005.

[8] E.S. Gardner Jr., “Exponential Smoothing: The State of
the Art,” Journal of Forecasting, Vol. 4, Issue 1, pp. 1–
28, 1985.

[9] A.K. Erlang, “Solution of Some Problems in the Theory
of Probabilities of Significance in Automatic Telephone
Exchanges,” Transactions of the Danish Academy of
Technical Sciences, No. 2, pp. 138–155, 1948.

[10] N906iL website,
http://www.nttdocomo.co.jp/english/product/foma/906i/n
906il/index.html

[11] G.A. Miller, “The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for
Processing Information,” Psychological Review, Vol. 63,
pp. 81–97, 1956.

[12] D. Mills, “Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI,” IETF RFC 2030,
1996.

[13] E. Vervest et al., “HTTP Time Protocol (HTP),” open
source software available at
http://www.clevervest.com/htp/

[14] F. Kargl et al., “Protecting Web Servers from
Distributed Denial of Service Attacks,” Proc. of
WWW’01, pp. 514–524, 2001.

[15] J. Mirkovic et al., “A Taxonomy of DDoS Attacks and
Defense Mechanisms,” ACM SIGCOMM Computer
Communications Review, Vol. 34, No. 2, pp. 39–54,
2004.

[16] E. Rescorla, “HTTP over TLS,” IETF RFC 2818, 2000.

