
Quick and Simultaneous Estimation of Available Bandwidth and
Effective UDP Throughput for Real-Time Communication

Takashi Oshiba and Kazuaki Nakajima
Service Platforms Research Laboratories, NEC Corporation, Japan

{oshiba@cp, nakajima@ah}.jp.nec.com

Abstract—We propose a method, called PathQuick2, for
quickly and simultaneously estimating both of the available
bandwidth that is unused capacity of an end-to-end path and
the effective UDP throughput that is the receiving rate of an
UDP flow which can pass through the path, with a single
measurement. In PathQuick2, a sender transmits a probing
packet train (i.e., a set of multiple probing packets) that each
packet is placed at an equal time interval, and each packet size
increases as the packet sequence proceeds. A receiver produces
the estimated available bandwidth and the estimated effective
UDP throughput at the same time from the single packet train.
To this end, the receiver detects a packet at which the observed
time intervals begin increasing, and the per-packet receiving
rate becomes the estimated available bandwidth. Then, the
receiver detects a packet at which the observed per-packet
receiving rates stop increasing even if the packet sequence
proceeds, and the per-packet receiving rate becomes the
estimated effective UDP throughput. Our evaluation of
PathQuick2 has shown that its estimation duration is only 182
ms, and its probing load is about 90 kB which is more than 160
times as light as a direct measurement of effective UDP
throughput. PathQuick2 can provide two useful metrics for
real-time communication applications such as video chat and
video conferencing; the available bandwidth indicates an
upper limit of video sending rate which enables stable video
communication without packet loss, and the effective UDP
throughput indicates an upper limit of video receiving rate that
can pass through an end-to-end path, with a given video
sending rate.

Keywords: available bandwidth, effective UDP throughput

I. INTRODUCTION
Real-time communication over IP networks such as

video chat [1] and video conferencing [2] have gained in
popularity in recent years. Since these applications have
strict delay requirements and the retransmission mechanism
of TCP does not fit the requirements, most of these
applications use UDP packets for video transmission [3]. In
addition to the delay, the available bandwidth (i.e., physical
capacity minus bandwidth being used during a certain time
period [4]) has a great influence on these applications.
Unfortunately, it is reported that the available bandwidth is
often insufficient for these applications [5]. When the
available bandwidth is insufficient, it is reported that Skype,
a major video chat application, doubles its video sending rate
by using FEC coding to counteract packet losses [1].
Windows Live Messenger, another major video chat

application, behaves similarly [3]. Knowledge of an upper
limit of video receiving rate that can pass through an end-to-
end path, with a given video sending rate, can improve this
greedy behavior of the applications. The reason is that if the
doubled video sending rate exceeds the upper limit, the
exceeded UDP packets are surely dropped at some router. So,
with the knowledge of the upper limit, the waste of
bandwidth can be avoided by restricting the video sending
rate under the upper limit (we discuss this issue in Section
VI).

In this paper, we propose a method, PathQuick2, to
quickly and simultaneously estimate both of the available
bandwidth and the effective UDP throughput (the definition
is given in Section II) of an end-to-end path with a single
measurement. PathQuick2 is the successor to our quick
available bandwidth estimation method, PathQuick [6]. In
PathQuick2, a sender transmits a probing packet train (i.e., a
set of multiple probing packets), and a receiver produces the
estimated available bandwidth and the estimated effective
UDP throughput at the same time from the single packet
train. These two metrics are useful for the real-time
communication applications; the available bandwidth
indicates an upper limit of video sending rate which enables
stable video communication without packet loss, and the
effective UDP throughput indicates an upper limit of video
receiving rate that can pass through the end-to-end path, with
a given video sending rate.

Conventional available bandwidth measurement methods
[4] and effective UDP throughput measurement methods
have a critical restriction in that they require a long
measurement time. Using these methods for real-time
communication would cause a degradation of real-time
responsiveness. Therefore, they are not suitable for real-time
communication.

The main contributions of this paper are summarized as
follows:
 We propose the probe slope model (PSM) which extends

and includes the concept of the probe rate model (PRM)
[7] which is employed by existing available bandwidth
estimation methods.

 At the best of our knowledge, our PSM-based method is
the first attempt to quickly estimate the effective UDP
throughput within only several hundred milliseconds.

 Also, our method is the first attempt to simultaneously
estimate both of the available bandwidth and the effective
UDP throughput from a single measurement.

II. EFFECTIVE UDP THROUGHPUT
The end-to-end effective UDP throughput is defined as

the receiving rate of an UDP flow that can pass through an
end-to-end path, with a given sending rate; i.e., successfully
received UDP data size divided by a given transmission time.
For simplicity, we assume the given sending rate is constant
bit-rate (CBR).

Note that the effective UDP throughput has dynamic
characteristics because it depends on both of the given
sending rate and cross-traffic. Namely, the higher sending
rate is given, the higher effective UDP throughput tends to
obtain. When a new UDP flow whose sending rate is higher
than the available bandwidth is injected, it may take the
bandwidth of existing cross-traffic away. If the cross-traffic
is also UDP flows, the new and existing UDP flows compete
and experience some packet losses each other, due to
unresponsive nature of UDP. On the other hand, if the cross-
traffic is TCP flows, the new UDP flow overcomes TCP
flows, due to responsive and elastic nature of TCP’s
congestion control mechanisms [8].

Since the effective UDP throughput is UDP-specific,
whereas the available bandwidth does not depend on a
specific transport protocol, thus these two are fundamentally
different metrics [9]. Also, the achievable UDP throughput
[9] and the effective UDP throughput are not the same; the
former is the maximum value of the latter. So, in order to
obtain the former, a given sending rate must be very high, at
least more than the end-to-end capacity. From the point of
view of real-time communication applications, however, the
achievable UDP throughput is usually too higher than the
maximum video sending rate, e.g., the maximum video
sending rate of Skype is about 1Mbps [1] and that of
Polycom HDX 9004 (a commercial video conferencing
product) is 6Mbps [10]. So, the effective UDP throughput is
more preferable for these applications rather than the
achievable UDP throughput.

III. RELATED WORK

A. Available Bandwidth Estimation
Much prior work has been done on end-to-end available

bandwidth estimation [4]. Representative examples are
Pathload [11], pathChirp [12] and Spruce [13]. However,
they have a critical restriction in that they require long
estimation duration, so they are not suitable for real-time
communication. Indeed, it has been reported that the
estimation durations of Pathload, pathChirp and Spruce are
as much as 7.0 to 22.0 s, 5.5 s and 11.0 s, respectively [14].
Several other methods [15][16][17][5] have been proposed.
However, the shortest estimation durations reported for them
are 5.6 s [15], 10.0 s [16], 20.0 s [17] and 30.0 s [5],
respectively. Our previous method, PathQuick, is an only
exception that it achieves quick available bandwidth
estimation within only several hundred milliseconds [6].

B. UDP Throughput Estimation
At the best of our knowledge, UDP throughput

estimation is scarcely studied. On the other hand, there are

several direct UDP throughput measurement (not estimation)
methods; Iperf [18] (with –u option) and Netest [9]. Iperf
spaces out each probing packet to match a user-specified
CBR sending rate, and reports observed effective UDP
throughput and packet loss rate after the measurement.
However, they also have a critical restriction in that they
require a long measurement time. Indeed, the measurement
time reported for Iperf is 10.0 s [14]. To make matters worse,
Iperf is quite intrusive. One possible way to improve Iperf’s
problems may be to shorten its measurement time. If its CBR
transmission time is shortened ultimately, Iperf transmits a
pair of probing packets. However, it is reported that a packet
pair method is less accurate than a packet train method in
general since its accuracy is highly affected by the packet
size of cross-traffic [19], as empirical evaluations have
confirmed [14]. The shortest measurement time reported for
Netest is 30.0 s [20]. So, they are not suitable for real-time
communication.

C. Estimation of Two Metrics
There are several methods that estimate two metrics

[21][22][23][24][25][26]. However, all of them estimate the
available bandwidth and the capacity of end-to-end path,
whereas PathQuick2 estimates the available bandwidth and
the effective UDP throughput. Furthermore, [21][22][23][24]
first estimates the one metric and then the another metric.
Namely, the two estimations are temporally serialized with
different probing packets, and thus requiring a longer
estimation duration and more probing load than a single
metric estimation. In contrast, PathQuick2 estimates the two
metrics at the same time with a single packet train.

D. TCP Throughput Estimation and Other Related Method
Various methods to estimate TCP throughput have been

proposed such as equation-based methods [27][28], history-
based methods [29][30][31][32] and the rest [33]. However,
they are not useful for real-time communication applications
since most of them use UDP rather than TCP.

RTCP [34] may be complementary to PathQuick2, and
they may be used together. However, RTCP can only be
used during video transmission since a RTCP receiver
feedbacks the statistics of a path such as packet losses and
delay jitter to a RTCP sender only after the beginning of
video transmission. Namely, it cannot be used just before
video transmission. On the other hand, PathQuick2 can be
used not only during but also just before video transmission.
For example, PathQuick2 can be used to determine the initial
video sending rate, while RTCP cannot be used.

IV. PROPOSAL OF PATHQUICK2

A. Requirements for Estimation of the Available
Bandwidth and the Effective UDP Throughput
Given the problems with conventional methods, we

identified two requirements that must be satisfied to enable
estimation of the available bandwidth and the effective UDP
throughput for real-time communication.
(1) Short estimation duration: In spite of the need to

estimate the two different metrics, the estimation

duration must be short to ensure the real-time
responsiveness.

(2) Light probing load: In spite of the need to estimate the
two different metrics, the probing load must be
minimized to avoid undesirable congestion.

B. Overview of Our Previous Method, PathQuick
Before stepping forward to explain PathQuick2, we

describe the overview of our previous quick available
bandwidth estimation method, PathQuick [6]. In PathQuick,
a sender transmits a UDP packet train to a receiver. The
receiver then estimates the available bandwidth and reports
the estimated result to the sender. PathQuick is based on the
probe rate model (PRM) [7]. PRM is also employed by
existing available bandwidth estimation methods such as
pathChirp and Pathload [19]. PRM is based on the
observation that (a) if the probing rate of a packet train at a
sender is less than the available bandwidth, the probing
packets will face no queuing delay at routers, so the time
interval for each probing packet observed at a receiver will
be the same as at the sender. On the other hand, (b) if the
probing rate exceeds the available bandwidth, the packets
will be queued at some router, increasing the time intervals
observed at the receiver. The available bandwidth can be
estimated by observing the probing rate at which there is a
transition from (a) to (b).

1) Design of Packet Train Structure
We designed the packet train structure of PathQuick with

the following features. In order to make the whole
transmission duration of a packet train short, the time
interval for each packet within the packet train must be short.
To this end, we designed the packet train so that each packet
is placed at an equal time interval (see Fig. 1-(1)). Also, in
order to probe over a wide range of rates with a single packet
train, the per-packet probing rate must be changed within the
single packet train. To this end, we designed the structure so
that each packet size linearly increases from the previous one
as the packet sequence proceeds (see Fig. 1-(2)).

Let us consider a packet train consisting of N probing
packets. Each packet within the packet train is placed at
equal time interval quickT at the sender (Fig. 1-(1)). The whole
transmission duration of a packet train (i.e., the packet train
length) is
   quickquickquick

quick
train TNTNTT  1)( 

Thus, packet train length)(quick
trainT is a linear function of

the number of probing packets N . This)(O N nature enables
PathQuick to keep the packet train length short.

The packet size of each probing packet is
  PPiPPiPPi  11)1( 

where Ni ,,2,1  and the constant value P is the increase
amount of the packet size (Fig. 1-(2)). Thus, each packet size

iP is a linear function of i , since 1P is a constant value.
The per-packet probing rate at the i -th packet – i.e., the

momentary probing rate of the packet train – is


quickquickquick

i
i T

PPi
T

P
T

PR 



 1  

Thus, each per-packet probing rate iR is also a linear
function of i . Therefore, PathQuick can increase the per-
packet probing rate within a single packet train, and thereby
can probe over a wide range of rates using a single packet
train.

Figure 1. Design of packet train structure.

2) PRM-based Available Bandwidth Estimation
Let us define the time interval between the i -th and
)1(i -th packet observed at the receiver as rcv

iT , and the
sender transmission time of the i -th packet as snd

it .
Assuming CBR cross-traffic, the receiver analyzes the

observed time intervals based on the PRM principle to
estimate the available bandwidth as follows:


otherwise,,(b)

],[if,(a)

1

1
rcv

i
rcv

i

snd
N

snd
iquick

rcv
i

TT
ttBRTT







 

where],[1
snd
N

snd ttB is the actual available bandwidth between
times sndt1 and snd

Nt .
In PathQuick, a per-packet probing rate quickkk TPR  ,

where the k -th packet is the packet at which the observed
time intervals at receiver rcv

iT begin increasing, becomes the
estimated available bandwidth. Fig. 2 illustrates the meaning
of Eq. (4), quick

rcv
k

rcv
k

rcvrcv TTTTT   1232 ,, in (a) and
rcv

N
rcv

k
rcv

kquick TTTT   ,,1  in (b). That is, the k -th packet is
the transition point of PRM, and the per-packet probing rate
of the k -th packet becomes the estimated available
bandwidth.

The above assumption of CBR cross-traffic, however,
does not always hold true in real networks. Intermittent and
bursty cross-traffic causes the queuing delay to fluctuate, so
the observed time intervals may not increase monotonically.
Hence, simply using Eq. (4) would lead to erroneous
estimation results. To avoid this, we employ a statistical
technique which is described in detail in [6].

Figure 2. PRM-based available bandwidth estimation.

(a) Per-packet probing rate lower than actual available
bandwidth leads to no stretching of time interval.

(b) Per-packet probing rate greater than actual available
bandwidth leads to stretching of time interval.

kP Receiver

k–2 N k+1 k k–1 1

rcv
kT

k–3

Transition point of PRM

quickTSender

(1) Every transmission interval is equal

Receiver

 IP
network

(2) Each packet size linearly increases

Sender

N–1 N N–2 N–3 1 2 Packet train

1PNP

quickT

P

)(quick
trainT

C. Proposal of the Probe Slope Model and PathQuick2
In this paper, we propose a method called PathQuick2

that can quickly and simultaneously estimate both of the
available bandwidth and the effective UDP throughput of an
end-to-end path by using a single packet train. Namely,
PathQuick2 has a “kill two birds with one stone”
characteristic. To this end, we develop the probe slope model
(PSM), which extends and includes the concept of probe rate
model (PRM). PathQuick2 is based on PSM and satisfies
both of the requirements described in Section IV-A.

In PRM, the temporal change is taken notice to detect the
transition point as illustrated in Fig. 2. In contrast, the
receiving rate change is taken notice in PSM. Assuming
CBR cross-traffic, Fig. 3 illustrates the concept of PSM. Fig.
3 depicts the slope of a series of the per-packet receiving
rates that is (i) steep at first but (ii) gradually changes to be
gentle and (iii) finally comes to be horizontal. PSM is based
on the observation that (i) if the per-packet sending rate is
less than the available bandwidth, a series of the per-packet
receiving rates will increase linearly. Then, (ii) if the per-
packet sending rate begins to exceed the available bandwidth,
the slope of the per-packet receiving rate series begins to be
gentle. After this, the UDP probing packets begins to push
the cross-traffic aside. Since the acceleration of pushing
aside declines gradually during the competition, the slope
continues to be gentle. Finally, (iii) if the per-packet sending
rate begins to exceed the effective UDP throughput, the tight
link is momentarily saturated, so the slope becomes
practically horizontal.

Namely, the first transition point from (i) to (ii) in PSM
corresponds to the single transition point of PRM. The per-
packet receiving rate at the first transition point in PSM
becomes the estimated available bandwidth. The effective
UDP throughput can be estimated by observing the receiving
rate at the second transition point from (ii) to (iii) in PSM.
PathChirp, Pathload, PathQuick and other PRM-based
methods focus on only the first transition point in PSM. In
contrast, PathQuick2 is the first method which focuses on
both of two transition points in PSM.

A PathQuick2 sender is unchanged from a PathQuick
sender, whereas a PathQuick2 receiver is modified based on
PSM. Consequently, the PathQuick2’s packet train structure
is the same as the PathQuick’s one. In [6], we have validated
that PathQuick’s estimation duration is sufficiently short and
its probing load is light enough for real-time communication.
The whole packet train length of PathQuick2 does not suffer
any stretch than PathQuick, while PathQuick2 has additional
capability that it can estimate the effective UDP throughput
from a single packet train. Consequently, PathQuick2
satisfies the first requirement. Furthermore, the total packet
size of the single packet train of PathQuick2 does not suffer
any increase. Hence, PathQuick2 also satisfies the second
requirement.

Our PSM complements and extends the large body of
work on network measurement. For example, if we apply the
concept of PSM to pathChirp, the modified version of
pathChirp will enable us to estimate the two metrics
simultaneously from a single packet train.

Note that we confirm no packet loss occurs due to the
PathQuick2 measurement unless highly heavy congestion
condition, since the excess of available bandwidth is
momentarily and the impact is absorbed by router queues.

Figure 3. Concept of the probe slope model (PSM).

D. Recursive Effective UDP Throughput Estimation
Algorithm
The assumption of CBR cross-traffic in Section IV-C

does not always hold true in real networks due to intermittent
and bursty cross-traffic. Fig. 4 depicts the uneven per-packet
receiving rate of a typical packet train in real networks. From
the point of microscopic view, due to the bursty cross-traffic
effect, the slope of the per-packet receiving rate series may
never be regarded as horizontal at last, or may be regarded as
horizontal at very early stage by mistake.

In order to mitigate the bursty cross-traffic effect, we
develop the recursive effective UDP throughput estimation
algorithm. In the algorithm, we analyze the slope from the
point of macroscopic view. Basic idea is that, we divide a
long section of a packet train into two short sections. If the
ratio of averaged receiving rate of the long section to that of
the latter short section is greater than a predefined value, we
continue the divide and compare operations, in a recursive
manner, until the ratio becomes lower than the predefined
value (see Fig. 4).

More specifically, Fig. 5 shows the pseudo code of the
algorithm. Let us define the receiving time of i -th packet as

rcv
it , the total packet size from the first packet to i -th packet

as is , the packet sequence number of the long section’s first
packet as start and the packet sequence number of the short
section’s first packet as mid . The long section length at j -th
recursive iteration is rcv

start
rcv
N

long
j ttT  , and The short section

length at j -th recursive iteration is rcv
mid

rcv
N

short
j ttT  where

,2,1j . The averaged receiving rate of the long section at
j -th recursive iteration is   long

jstartN
long
j TssR  , and the

averaged receiving rate of the short section at j -th recursive
iteration is   short

jmidN
short
j TssR  . At each recursive

iteration, mid is updated to   1 Nstartmid where the
division factor  is the ratio of number of packets between
the long section and the short one. Also start is updated to

midstart  . The division factor  controls the number of
packets of a short section. For example, if 2 and 24N ,

Per-packet receiving rate
N

First transition point in PSM
(=Transition point in PRM)

Second transition point in PSM

Per-packet sending rate

Effective U
D

P throughput

Per-packet
receiving rate

A
vailable bandw

idth

Per-packet receiving time

N–1

(ii) (iii) (i)

the first long section (covered by the lowest horizontal blue
line) has 24 packets, and the first short section (covered by
the second lowest horizontal blue line) has 24 / 2 = 12
packets. Also, the values of mid in the first, second and third
recursive iteration are    1321241  ,    19212413 
and    22212419  , respectively. The recursive
algorithm stops if long

j
short
j RR)1( where  is the nearness

threshold, and the estimated effective UDP throughput
becomes   2long

j
short
j RR  .

We are currently studying other ways to mitigate the
bursty cross-traffic effect. One of them is to use the
exponentially weighted moving average (EWMA). Another
way is to use the Kalman filter.

Figure 4. Recursive effective UDP throughput estimation algorithm.

function estimate_effective_udp_throughput () {
 1start
 for (1j ; 1 startN ; j) {
   1 Nstartmid
 rcv

start
rcv
N

long
j ttT 

 rcv
mid

rcv
N

short
j ttT 

   long
jstartN

long
j TssR 

   short
jmidN

short
j TssR 

 if (long
j

short
j RR)1() {

 return   2long
j

short
j RR 

 }
 midstart 
 }
}

Figure 5. Pseudo code of the recursive estimation algorithm.

E. Implementation
We implemented a prototype PathQuick2 system as

ActiveX components that can run on Windows OS (see Fig.
6). Thus, the PathQuick2 system can be easily integrated into
real-time communication applications.

Figure 6. Snapshot of the prototype PathQuick2 system.

V. EVALUATION
We evaluated PathQuick2 regarding various aspects;

estimation duration, probing load and estimation accuracy.

A. Parameter Choice for Quantitative Evaluation
Before going into details of the evaluation, we will

explain how we choose the values of several parameters used
for the quantitative evaluation.

1) Maximum Probable Bandwidth maxB
In this evaluation, we suppose a video conferencing as a

real-time communication application since the possible
variation range of video sending rate is wider than video chat.
A maximum video sending rate of a current commercial
product is 6 Mbps [10], and maximum video sending rates of
commercial products continues to increase in recent years.
With an eye to the future, we doubled the rate, and thus we
choose 12 Mbps as the maximum video sending rate. Hence,
we choose 12 Mbps as the maximum probable bandwidth of
a probing packet train maxB .

To realize the 12-Mbps target of maximum probable
bandwidth, we set the equal time interval 1quickT ms, the
packet size of first packet 11 P byte and the increase
amount of the packet size 12P bytes. We set the packet
size of last packet 489,1NP bytes. This means a packet train
of PathQuick2 consists of 12512/)1489,1(1 N packets.
So, 912,11001.0489,18max  quickN TPB kbps. This
practically covers the 12-Mbps target.

2) RTT
Since the average one-way delay (OWD) in current

Japanese Internet use among 13 major Japanese cities has
been reported to be 26 ms in Table 1 of [35], we set the end-
to-end round trip time (RTT) to 52 ms in our evaluation.

B. Experimental Setup
We did simulations using an ns-2 network simulator [36]

to obtain the evaluation results in a controllable and
repeatable manner. Fig. 7 shows the dumbbell topology, with
a single bottleneck link, of the simulations. Since we intend
to explore PathQuick2 under the condition that the 12-Mbps
maximum video sending rate is moderately close to the
physical capacity of the bottleneck link, e.g., approximately

Per-packet
receiving rate

Per-packet receiving time

Third comparison

Second comparison

First comparison longT1

longshort TT 21 

longR1

longshort RR 21 

Estimated effective
UDP throughput

Estimation duration Estimation history

80%, we choose 16 Mbps as the physical capacity of the
bottleneck link. We set the RTT to 52 ms. The physical
capacity and OWD of each link are also shown in Fig. 7. We
conducted two types of simulation using different cross-
traffic over the same topology. The cross-traffic in the first
simulation is multiple UDP flows with Poisson packet
arrivals, whereas the second one is multiple TCP flows. In
order to measure actual effective UDP throughput (i.e., the
right answer to the PathQuick2’s estimates) during running
of the cross-traffic, we emulated Iperf, a direct UDP
throughput measurement tool. The sending rate of the
emulated Iperf is set to 12 Mbps with CBR in all the
simulations since the maximum probable bandwidth of
PathQuick2 is 12 Mbps. Since the measurement time
reported for Iperf is 10.0 s [14], and Iperf transmits UDP
packets with 1,470 bytes, we emulate the behavior
accordingly. The timing of the estimation with PathQuick2
and the measurement with Iperf are separated to avoid
interference between each other’s outputs.

Figure 7. Topology with a single bottleneck link.

C. Estimation Duration
We measured the estimation duration of PathQuick2. It is

the sum of the packet train length)(quick
trainT , transmission (or

serialization) delay, queuing delay at routers, and RTT.
According to Section V-A,)(quick

trainT is calculated to
124)1125(1)1()( NTT quick

quick
train ms and the RTT is 52

ms. We observed the average estimation duration of
PathQuick2 over the two types of simulation is 182 ms. This
duration is shorter than the 400-ms OWD requirement of
two-way video communication recommended by ITU-T [37].

D. Probing Load
We measured the total packet size of a single packet train

(i.e., intrusiveness). PathQuick2’s total packet size of a
single packet train is 1+13+, … , +1,489 = 93.1 kB. In
contrast in Iperf, its total packet size of 10.0-s measurement
with the 12-Mbps sending rate is as much as 10.012 / 8 =
15 MB. Thus, the probing load of PathQuick2 is 15 MB /
93.1 kB = 161.1 times as light as Iperf.

E. Estimation Accuracy with Poisson UDP cross-traffic
We evaluated the estimation accuracy of PathQuick2

with Poisson UDP cross-traffic with a 1,000-byte packet size.
Note that the Internet traffic has been shown to be well
represented by the Poisson model at small time scales such
as less than 1 s [38] or 5 s [39], and the estimation duration
of PathQuick2 is less than 1 s as shown in Section V-C. The
averaged cross-traffic load aggregated at the entrance of

bottleneck link was varied from 4 to 16 Mbps, and thus the
available bandwidth was varied from 12416  Mbps to

01616  Mbps. We mainly focus on the estimation
accuracy of the effective UDP throughput rather than the
available bandwidth, since we have already validated the
latter in [6]. We use simulations to better understand the role
of the several PathQuick2 parameters. We varied the division
factor  and the nearness threshold  in the recursive
effective UDP throughput estimation algorithm described in
Section IV-D, while keeping other parameters constant as
described in Section V-A.

First, we assess the impact of the division factor  . A
larger  leads to the less number of packets of short sections.
Fig. 8 demonstrates the effect of the division factor  .
Actual effective UDP throughput measured by the emulated
Iperf is plotted with black circles. We observed that 0.2
leads to somewhat wide range estimation error, and 4.2
leads somewhat underestimate in particular when there is
enough available bandwidth (the right end in Fig. 8). So, we
choose 2.2 .

Next, we assess the impact of the nearness threshold  .
This parameter affects the convergence condition of the
recursive algorithm. Fig. 9 demonstrates the effect of the
nearness threshold  . A smaller  leads to tighter
convergence condition, and we observed that increasing the
estimation accuracy. Based on the results, we choose

05.0 .
We extract the estimation results with only the case of

2.2 and 05.0 in Fig. 10. We observed PathQuick2’s
estimates are conservative, i.e., on the safe side from the
point of view of real-time communication. Its maximum
estimation error is approximately 2 Mbps. Considering that
its estimation duration is sufficiently short and also its
probing load is 161.1 times as light as Iperf, we believe that
the estimation accuracy of PathQuick2 is reasonable in
practical use for real-time communication.

0

1

2

3

4

5

6

7

8

9

10

11

12

0 2 4 6 8 10 12

Available bandwidth (Mbps)

U
D

P
th

ro
ug

hp
ut

 (M
bp

s)

a=2.0, e=0.05
a=2.2, e=0.05
a=2.4, e=0.05
Iperf

Figure 8. Estimation accuracy and the variation of division factor  .

PathQuick2 / Iperf sender PathQuick2 / Iperf receiver

Cross-traffic sources Cross-traffic sinks

100 Mbps, 8 ms

100 Mbps, 8 ms

100 Mbps, 8 ms

100 Mbps, 8 ms

16 Mbps, 10 ms

(

0

1

2

3

4

5

6

7

8

9

10

11

12

0 2 4 6 8 10 12

Available bandwidth (Mbps)

U
D

P
th

ro
ug

hp
ut

 (M
bp

s)

a=2.2, e=0.05
a=2.2, e=0.1
a=2.2, e=0.2
Iperf

Figure 9. Estimation accuracy and the variation of nearness threshold  .

0

1

2

3

4

5

6

7

8

9

10

11

12

0 2 4 6 8 10 12

Available bandwidth (Mbps)

U
D

P
th

ro
ug

hp
ut

 (M
bp

s)

a=2.2, e=0.05
Iperf

Figure 10. Estimation accuracy where 2.2 and 05.0 .

F. Estimation Accuracy with TCP cross-traffic
We evaluated the estimation accuracy of PathQuick2

with multiple TCP cross-traffic. Akamai has reported [40]
that the global average TCP throughput is approximately 2
Mbps over the current Internet. Since the bottleneck capacity
is 16 Mbps, we set the maximum number of TCP flows to 16
/ 2 = 8 flows. In this simulation, we varied the number of
TCP flows from 4 to 8 flows. We use 2.2 and 05.0 .

Fig. 11 shows the estimation results. The 10.0-s
measurement results with the emulated Iperf are quite nearly

12 Mbps, consistently. As described in Section II, this is due
to the responsive and elastic nature of TCP and the
unresponsive nature of UDP. During the 10.0-s measurement,
the emulated Iperf rapidly take the TCP’s bandwidth away
up to 12 Mbps. We observed PathQuick2’s estimates are also
consistent; its average estimation errors are approximately
from 2 to 3 Mbps underestimate. Although the maximum
estimation error, approximately 5 Mbps, is larger than the
case of Poisson UDP cross-traffic, PathQuick2’s estimates
are also still on the safe side.

Note that TCP flows aggressively consume the available
bandwidth in general. Indeed, we confirmed that the
available bandwidth is always almost zero throughout the
simulations, even when there is neither PathQuick2 nor
emulated Iperf traffic. In terms of the absence of available
bandwidth, the conditions may be similar to the left end of
Fig. 10. Although PathQuick2’s estimates range from 5 to 9
Mbps in the left end of Fig. 10, the ones range from 7 to 12
Mbps in Fig. 11, i.e., higher range. This implies PathQuick2
can chase the effective UDP throughput without dependent
on the transport protocol of cross-traffic.

0
1
2
3
4
5
6
7
8
9

10
11
12

3 4 5 6 7 8 9
The number of TCP cross-traffic flows

U
D

P
th

ro
ug

hp
ut

 (M
bp

s)

PathQuick2
Iperf

Figure 11. Estimation accuracy vs. multiple TCP cross-traffic flows.

VI. DISCUSSION
The greedy behavior of real-time communication

applications described in Section I leads to unfairness
between UDP and TCP, and may cause the congestion
collapse from undelivered packets [8]. To avoid this, TCP-
friendly rate control (TFRC) [41] is proposed for real-time
communication. A TFRC-based real-time communication
application can control the video sending rate and maintain
the inter-protocol’s fairness. Since the TFRC only uses the
information of packet size, RTT and packet loss rate for its
rate control, the knowledge of the available bandwidth and
the effective UDP throughput potentially improve further its
rate control mechanism. We are currently developing an
adaptive TFRC-based rate control method for real-time
communication which combines PathQuick2 and the
adaptive rate control method [42] that is developed in our
research group, and preliminary results are encouraging.

VII. CONCLUSION AND FUTURE WORK
PathQuick2 is a method that can quickly and

simultaneously estimate both of the available bandwidth and

(
(

(

the effective UDP throughput from a single packet train.
Through an evaluation, we confirmed that PathQuick2
completes the estimation in 182 ms. We also confirmed that
its probing load is about 90 kB which is more than 160 times
as light as a direct measurement of effective UDP throughput.

In future work, we will exhaustively analyze the
relationship among the estimation accuracy, the division
factor  and the nearness threshold  to further improve the
estimation accuracy. We also plan to conduct large-scale
experiments over the Internet with the prototype system to
validate PathQuick2 in real networks.

REFERENCES
[1] L. D. Cicco, S. Mascolo and V. Palmisano, “Skype video

responsiveness to bandwidth variations,” ACM NOSSDAV, pp. 81–86,
2008.

[2] L. Gharai, C. Perkins and A. Mankin, “Scaling video conferencing
through spatial tiling,” ACM NOSSDAV, pp. 137–143, 2001.

[3] O. Boyaci, A. G. Forte and H. Schulzrinne, “Performance of video-
chat applications under congestion,” IEEE ISM, pp. 213–218, 2009.

[4] R. Prasad, C. Dovrolis, M. Murray and K. Claffy, “Bandwidth
estimation: metrics, measurement techniques, and tools,” IEEE
Network, Vol. 17, Issue 6, pp. 27–35, 2003.

[5] A. Akella, S. Seshan and A. Shaikh, “An empirical evaluation of wide
area Internet bottlenecks,” ACM IMC, pp. 101–114, 2003.

[6] T. Oshiba and K. Nakajima, “Quick end-to-end available bandwidth
estimation for QoS of real-time multimedia communication,” IEEE
ISCC, pp. 162–167, 2010.

[7] L. Lao, C. Dovrolis and M. Y. Sanadidi, “The probe gap model can
underestimate the available bandwidth of multihop paths,” ACM
SIGCOMM CCR, Vol. 36, Issue 5, pp. 29–34, 2006.

[8] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion
control in the Internet,” IEEE/ACM Transactions on Networking
(TON), Vol. 7, No. 4, pp. 458–472, 1999.

[9] G. Jin and B. Tierney, “Netest: a tool to measure the maximum burst
size, available bandwidth and achievable throughput,” IEEE ITRE, pp.
578–582, 2003.

[10] Polycom, Inc., “Polycom HDX 9000 series FAQ,” [online]
http://www.ivci.com/pdf/polycom-hdx-series-faq.pdf

[11] M. Jain and C. Dovrolis, “End-to-end available bandwidth:
measurement methodology, dynamics, and relation with TCP
throughput,” ACM SIGCOMM, pp. 295–308, 2002.

[12] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil and L. Cottrell,
“pathChirp: efficient available bandwidth estimation for network
paths,” PAM Workshop, 2003.

[13] J. Strauss, D. Katabi and F. Kaashoek, “A measurement study of
available bandwidth estimation tools,” ACM IMC, pp. 39–44, 2003.

[14] A. Shriram, M. Murray, Y. Hyun, N. Brownlee, A. Broido, M.
Fomenkov and K. Claffy, “Comparison of public end-to-end
bandwidth estimation tools on high-speed links,” PAM Workshop, pp.
306–320, 2005.

[15] D. Croce, T. En-Najjary, G. Urvoy-Keller and E. W. Biersack, “Fast
available bandwidth sampling for ADSL links: rethinking the
estimation for larger-scale measurements,” PAM Conference, pp. 67–
76, 2009.

[16] Q. Liu and J. Hwang, “End-to-end available bandwidth estimation
and time measurement adjustment for multimedia QoS,” IEEE ICME,
Vol. 3, pp. 373–376, 2003.

[17] S. S. Wang and H. F. Hsiao, “Fast end-to-end available bandwidth
estimation for real-time multimedia networking,” IEEE MMSP, pp.
415–418, 2006.

[18] Iperf, [online] http://iperf.sourceforge.net/

[19] M. Jain and C. Dovrolis, “Ten fallacies and pitfalls on end-to-end
available bandwidth estimation,” ACM IMC, pp. 272–277, 2004.

[20] G. Jin, “Algorithms and requirements for measuring network
bandwidth,” LBNL Report, LBNL-48330, 2002.

[21] N. Hu and P. Steenkiste, “Evaluation and characterization of available
bandwidth probing techniques,” IEEE JSAC, Vol. 21, No. 6, pp. 879–
894, 2003.

[22] S. Sargento and R. Valadas, “Accurate estimation of capacities and
cross-traffic of all links in a path using ICMP timestamps,”
Telecommunications Systems, Vol. 33, No. 1, pp. 89–115, 2006.

[23] C. L. T. Man, G. Hasegawa and M. Murata, “A merged inline
measurement method for capacity and available bandwidth,” PAM
Workshop, pp. 341–344, 2005.

[24] K. M. Salehin and R. Rojas-Cessa, “Combined methodology for
measurement of available bandwidth and link capacity in wired
packet networks,” IET Communications, Vol. 4, Issue 2, pp. 240–252,
2010.

[25] B. Melander, M. Bjorkman and P. Gunningberg, “A new end-to-end
probing and analysis method for estimating bandwidth bottlenecks,”
IEEE GLOBECOM, pp. 415–420, 2000.

[26] L. Cong, G. Lu, Y. Chen, B. Deng and X. Li, “pathWave: combined
estimation of network link capacity and available bandwidth using
statistical signal processing,” IEEE ICON, pp. 1–6, 2008.

[27] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” ACM
SIGCOMM, pp. 303–314, 1998.

[28] M. Mathis, J. Semke, J. Mahdavi and T. Ott, “The macroscopic
behavior of the TCP congestion avoidance algorithm,” ACM
SIGCOMM CCR, Vol. 27, Issue 3, pp. 67–82, 1997.

[29] Q. He, C. Dovrolis and M. Ammar, “On the predictability of large
transfer TCP throughput,” ACM SIGCOMM, pp. 145–156, 2005.

[30] M. Swany and R. Wolski, “Multivariate resource performance
forecasting in the network weather service,” ACM/IEEE
Supercomputing, pp. 1–10, 2002.

[31] M. Mirza, J. Sommers, P. Barford and X. Zhu, “A machine learning
approach to TCP throughput prediction,” ACM SIGMETRICS, Vol.
35, Issue 1, pp. 97–108, 2007.

[32] T. Goto, A. Tagami, T. Hasegawa and S. Ano, “TCP throughput
estimation by lightweight variable packet size probing in CDMA2000
1x EV-DO network,” IEEE SAINT, pp. 1–8, 2009.

[33] A. Tirumala, L. Cottrell and T. Dunigan, “Measuring end-to-end
bandwidth with Iperf using Web100,” PAM Workshop, 2003.

[34] H. Schulzrinne et al., “RTP: a transport protocol for real-time
applications,” IETF RFC 3550, 2003.

[35] K. Yoshida et al., “Inferring POP-level ISP topology through end-to-
end delay measurement,” PAM Conference, pp. 35–44, 2009.

[36] Network simulator ns-2, [online] http://www.isi.edu/nsnam/ns/
[37] ITU-T recommendation G.1010, “End-user multimedia QoS

categories,” 2001.
[38] T. Karagiannis, M. Molle, M. Faloutsos and A. Broido, “A

nonstationary Poisson view of Internet traffic,” IEEE INFOCOM, Vol.
3, pp. 1558–1569, 2004.

[39] H. Gupta, A. Mahanti and V. J. Ribeiro, “Revisiting coexistence of
Poissonity and self-similarity in Internet traffic,” IEEE MASCOTS, pp.
1–10, 2009.

[40] Akamai Technologies, Inc., “The state of the Internet, 2nd quarter,
2009,” Vol. 2, No. 2, 2009, [online] http://www.akamai.com/html/
about/press/releases/2009/press_100109.html

[41] S. Floyd, M. Handley, J. Pahdye and J. Widmer, “TCP friendly rate
control (TFRC): protocol specification,” IETF RFC 5348, 2008.

[42] H. Yoshida, K. Nogami and K. Satoda, “Proposal and evaluation of
joint rate control for stored video streaming,” IEEE CQR, pp. 1–6,
2010.

