
Quick and Simultaneous Estimation of Available Bandwidth and 
Effective UDP Throughput for Real-Time Communication 

 

Takashi Oshiba and Kazuaki Nakajima 
Service Platforms Research Laboratories, NEC Corporation, Japan 

{oshiba@cp, nakajima@ah}.jp.nec.com
 
 

Abstract—We propose a method, called PathQuick2, for 
quickly and simultaneously estimating both of the available 
bandwidth that is unused capacity of an end-to-end path and 
the effective UDP throughput that is the receiving rate of an 
UDP flow which can pass through the path, with a single 
measurement. In PathQuick2, a sender transmits a probing 
packet train (i.e., a set of multiple probing packets) that each 
packet is placed at an equal time interval, and each packet size 
increases as the packet sequence proceeds. A receiver produces 
the estimated available bandwidth and the estimated effective 
UDP throughput at the same time from the single packet train. 
To this end, the receiver detects a packet at which the observed 
time intervals begin increasing, and the per-packet receiving 
rate becomes the estimated available bandwidth. Then, the 
receiver detects a packet at which the observed per-packet 
receiving rates stop increasing even if the packet sequence 
proceeds, and the per-packet receiving rate becomes the 
estimated effective UDP throughput. Our evaluation of 
PathQuick2 has shown that its estimation duration is only 182 
ms, and its probing load is about 90 kB which is more than 160 
times as light as a direct measurement of effective UDP 
throughput. PathQuick2 can provide two useful metrics for 
real-time communication applications such as video chat and 
video conferencing; the available bandwidth indicates an 
upper limit of video sending rate which enables stable video 
communication without packet loss, and the effective UDP 
throughput indicates an upper limit of video receiving rate that 
can pass through an end-to-end path, with a given video 
sending rate. 
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I.  INTRODUCTION 
Real-time communication over IP networks such as 

video chat [1] and video conferencing [2] have gained in 
popularity in recent years. Since these applications have 
strict delay requirements and the retransmission mechanism 
of TCP does not fit the requirements, most of these 
applications use UDP packets for video transmission [3]. In 
addition to the delay, the available bandwidth (i.e., physical 
capacity minus bandwidth being used during a certain time 
period [4]) has a great influence on these applications. 
Unfortunately, it is reported that the available bandwidth is 
often insufficient for these applications [5]. When the 
available bandwidth is insufficient, it is reported that Skype, 
a major video chat application, doubles its video sending rate 
by using FEC coding to counteract packet losses [1]. 
Windows Live Messenger, another major video chat 

application, behaves similarly [3]. Knowledge of an upper 
limit of video receiving rate that can pass through an end-to-
end path, with a given video sending rate, can improve this 
greedy behavior of the applications. The reason is that if the 
doubled video sending rate exceeds the upper limit, the 
exceeded UDP packets are surely dropped at some router. So, 
with the knowledge of the upper limit, the waste of 
bandwidth can be avoided by restricting the video sending 
rate under the upper limit (we discuss this issue in Section 
VI). 

In this paper, we propose a method, PathQuick2, to 
quickly and simultaneously estimate both of the available 
bandwidth and the effective UDP throughput (the definition 
is given in Section II) of an end-to-end path with a single 
measurement. PathQuick2 is the successor to our quick 
available bandwidth estimation method, PathQuick [6]. In 
PathQuick2, a sender transmits a probing packet train (i.e., a 
set of multiple probing packets), and a receiver produces the 
estimated available bandwidth and the estimated effective 
UDP throughput at the same time from the single packet 
train. These two metrics are useful for the real-time 
communication applications; the available bandwidth 
indicates an upper limit of video sending rate which enables 
stable video communication without packet loss, and the 
effective UDP throughput indicates an upper limit of video 
receiving rate that can pass through the end-to-end path, with 
a given video sending rate. 

Conventional available bandwidth measurement methods 
[4] and effective UDP throughput measurement methods 
have a critical restriction in that they require a long 
measurement time. Using these methods for real-time 
communication would cause a degradation of real-time 
responsiveness. Therefore, they are not suitable for real-time 
communication. 

The main contributions of this paper are summarized as 
follows: 
 We propose the probe slope model (PSM) which extends 

and includes the concept of the probe rate model (PRM) 
[7] which is employed by existing available bandwidth 
estimation methods. 

 At the best of our knowledge, our PSM-based method is 
the first attempt to quickly estimate the effective UDP 
throughput within only several hundred milliseconds. 

 Also, our method is the first attempt to simultaneously 
estimate both of the available bandwidth and the effective 
UDP throughput from a single measurement. 



II. EFFECTIVE UDP THROUGHPUT 
The end-to-end effective UDP throughput is defined as 

the receiving rate of an UDP flow that can pass through an 
end-to-end path, with a given sending rate; i.e., successfully 
received UDP data size divided by a given transmission time. 
For simplicity, we assume the given sending rate is constant 
bit-rate (CBR). 

Note that the effective UDP throughput has dynamic 
characteristics because it depends on both of the given 
sending rate and cross-traffic. Namely, the higher sending 
rate is given, the higher effective UDP throughput tends to 
obtain. When a new UDP flow whose sending rate is higher 
than the available bandwidth is injected, it may take the 
bandwidth of existing cross-traffic away. If the cross-traffic 
is also UDP flows, the new and existing UDP flows compete 
and experience some packet losses each other, due to 
unresponsive nature of UDP. On the other hand, if the cross-
traffic is TCP flows, the new UDP flow overcomes TCP 
flows, due to responsive and elastic nature of TCP’s 
congestion control mechanisms [8]. 

Since the effective UDP throughput is UDP-specific, 
whereas the available bandwidth does not depend on a 
specific transport protocol, thus these two are fundamentally 
different metrics [9]. Also, the achievable UDP throughput 
[9] and the effective UDP throughput are not the same; the 
former is the maximum value of the latter. So, in order to 
obtain the former, a given sending rate must be very high, at 
least more than the end-to-end capacity. From the point of 
view of real-time communication applications, however, the 
achievable UDP throughput is usually too higher than the 
maximum video sending rate, e.g., the maximum video 
sending rate of Skype is about 1Mbps [1] and that of 
Polycom HDX 9004 (a commercial video conferencing 
product) is 6Mbps [10]. So, the effective UDP throughput is 
more preferable for these applications rather than the 
achievable UDP throughput. 

III. RELATED WORK 

A. Available Bandwidth Estimation 
Much prior work has been done on end-to-end available 

bandwidth estimation [4]. Representative examples are 
Pathload [11], pathChirp [12] and Spruce [13]. However, 
they have a critical restriction in that they require long 
estimation duration, so they are not suitable for real-time 
communication. Indeed, it has been reported that the 
estimation durations of Pathload, pathChirp and Spruce are 
as much as 7.0 to 22.0 s, 5.5 s and 11.0 s, respectively [14]. 
Several other methods [15][16][17][5] have been proposed. 
However, the shortest estimation durations reported for them 
are 5.6 s [15], 10.0 s [16], 20.0 s [17] and 30.0 s [5], 
respectively. Our previous method, PathQuick, is an only 
exception that it achieves quick available bandwidth 
estimation within only several hundred milliseconds [6]. 

B. UDP Throughput Estimation 
At the best of our knowledge, UDP throughput 

estimation is scarcely studied. On the other hand, there are 

several direct UDP throughput measurement (not estimation) 
methods; Iperf [18] (with –u option) and Netest [9]. Iperf 
spaces out each probing packet to match a user-specified 
CBR sending rate, and reports observed effective UDP 
throughput and packet loss rate after the measurement. 
However, they also have a critical restriction in that they 
require a long measurement time. Indeed, the measurement 
time reported for Iperf is 10.0 s [14]. To make matters worse, 
Iperf is quite intrusive. One possible way to improve Iperf’s 
problems may be to shorten its measurement time. If its CBR 
transmission time is shortened ultimately, Iperf transmits a 
pair of probing packets. However, it is reported that a packet 
pair method is less accurate than a packet train method in 
general since its accuracy is highly affected by the packet 
size of cross-traffic [19], as empirical evaluations have 
confirmed [14]. The shortest measurement time reported for 
Netest is 30.0 s [20]. So, they are not suitable for real-time 
communication. 

C. Estimation of Two Metrics 
There are several methods that estimate two metrics 

[21][22][23][24][25][26]. However, all of them estimate the 
available bandwidth and the capacity of end-to-end path, 
whereas PathQuick2 estimates the available bandwidth and 
the effective UDP throughput. Furthermore, [21][22][23][24] 
first estimates the one metric and then the another metric. 
Namely, the two estimations are temporally serialized with 
different probing packets, and thus requiring a longer 
estimation duration and more probing load than a single 
metric estimation. In contrast, PathQuick2 estimates the two 
metrics at the same time with a single packet train. 

D. TCP Throughput Estimation and Other Related Method 
Various methods to estimate TCP throughput have been 

proposed such as equation-based methods [27][28], history-
based methods [29][30][31][32] and the rest [33]. However, 
they are not useful for real-time communication applications 
since most of them use UDP rather than TCP. 

RTCP [34] may be complementary to PathQuick2, and 
they may be used together. However, RTCP can only be 
used during video transmission since a RTCP receiver 
feedbacks the statistics of a path such as packet losses and 
delay jitter to a RTCP sender only after the beginning of 
video transmission. Namely, it cannot be used just before 
video transmission. On the other hand, PathQuick2 can be 
used not only during but also just before video transmission. 
For example, PathQuick2 can be used to determine the initial 
video sending rate, while RTCP cannot be used. 

IV. PROPOSAL OF PATHQUICK2 

A. Requirements for Estimation of the Available 
Bandwidth and the Effective UDP Throughput 
Given the problems with conventional methods, we 

identified two requirements that must be satisfied to enable 
estimation of the available bandwidth and the effective UDP 
throughput for real-time communication. 
(1) Short estimation duration: In spite of the need to 

estimate the two different metrics, the estimation 



duration must be short to ensure the real-time 
responsiveness. 

(2) Light probing load: In spite of the need to estimate the 
two different metrics, the probing load must be 
minimized to avoid undesirable congestion. 

B. Overview of Our Previous Method, PathQuick 
Before stepping forward to explain PathQuick2, we 

describe the overview of our previous quick available 
bandwidth estimation method, PathQuick [6]. In PathQuick, 
a sender transmits a UDP packet train to a receiver. The 
receiver then estimates the available bandwidth and reports 
the estimated result to the sender. PathQuick is based on the 
probe rate model (PRM) [7]. PRM is also employed by 
existing available bandwidth estimation methods such as 
pathChirp and Pathload [19]. PRM is based on the 
observation that (a) if the probing rate of a packet train at a 
sender is less than the available bandwidth, the probing 
packets will face no queuing delay at routers, so the time 
interval for each probing packet observed at a receiver will 
be the same as at the sender. On the other hand, (b) if the 
probing rate exceeds the available bandwidth, the packets 
will be queued at some router, increasing the time intervals 
observed at the receiver. The available bandwidth can be 
estimated by observing the probing rate at which there is a 
transition from (a) to (b). 

1) Design of Packet Train Structure 
We designed the packet train structure of PathQuick with 

the following features. In order to make the whole 
transmission duration of a packet train short, the time 
interval for each packet within the packet train must be short. 
To this end, we designed the packet train so that each packet 
is placed at an equal time interval (see Fig. 1-(1)). Also, in 
order to probe over a wide range of rates with a single packet 
train, the per-packet probing rate must be changed within the 
single packet train. To this end, we designed the structure so 
that each packet size linearly increases from the previous one 
as the packet sequence proceeds (see Fig. 1-(2)). 

Let us consider a packet train consisting of N  probing 
packets. Each packet within the packet train is placed at 
equal time interval quickT  at the sender (Fig. 1-(1)). The whole 
transmission duration of a packet train (i.e., the packet train 
length) is 
   quickquickquick

quick
train TNTNTT  1)(  

Thus, packet train length )(quick
trainT  is a linear function of 

the number of probing packets N . This )(O N  nature enables 
PathQuick to keep the packet train length short. 

The packet size of each probing packet is 
  PPiPPiPPi  11 )1(  

where Ni ,,2,1   and the constant value P  is the increase 
amount of the packet size (Fig. 1-(2)). Thus, each packet size 

iP  is a linear function of i , since 1P  is a constant value. 
The per-packet probing rate at the i -th packet – i.e., the 

momentary probing rate of the packet train – is 


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Thus, each per-packet probing rate iR  is also a linear 
function of i . Therefore, PathQuick can increase the per-
packet probing rate within a single packet train, and thereby 
can probe over a wide range of rates using a single packet 
train. 

 
Figure 1.  Design of packet train structure. 

2) PRM-based Available Bandwidth Estimation 
Let us define the time interval between the i -th and 
)1( i -th packet observed at the receiver as rcv

iT , and the 
sender transmission time of the i -th packet as snd

it . 
Assuming CBR cross-traffic, the receiver analyzes the 

observed time intervals based on the PRM principle to 
estimate the available bandwidth as follows: 


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snd ttB  is the actual available bandwidth between 
times sndt1  and snd

Nt . 
In PathQuick, a per-packet probing rate quickkk TPR  , 

where the k -th packet is the packet at which the observed 
time intervals at receiver rcv

iT  begin increasing, becomes the 
estimated available bandwidth. Fig. 2 illustrates the meaning 
of Eq. (4), quick

rcv
k

rcv
k

rcvrcv TTTTT   1232 ,,  in (a) and 
rcv

N
rcv

k
rcv

kquick TTTT   ,,1   in (b). That is, the k -th packet is 
the transition point of PRM, and the per-packet probing rate 
of the k -th packet becomes the estimated available 
bandwidth. 

The above assumption of CBR cross-traffic, however, 
does not always hold true in real networks. Intermittent and 
bursty cross-traffic causes the queuing delay to fluctuate, so 
the observed time intervals may not increase monotonically. 
Hence, simply using Eq. (4) would lead to erroneous 
estimation results. To avoid this, we employ a statistical 
technique which is described in detail in [6]. 

 
Figure 2.  PRM-based available bandwidth estimation. 

(a) Per-packet probing rate lower than actual available 
bandwidth leads to no stretching of time interval. 

(b) Per-packet probing rate greater than actual available 
bandwidth leads to stretching of time interval. 
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C. Proposal of the Probe Slope Model and PathQuick2 
In this paper, we propose a method called PathQuick2 

that can quickly and simultaneously estimate both of the 
available bandwidth and the effective UDP throughput of an 
end-to-end path by using a single packet train. Namely, 
PathQuick2 has a “kill two birds with one stone” 
characteristic. To this end, we develop the probe slope model 
(PSM), which extends and includes the concept of probe rate 
model (PRM). PathQuick2 is based on PSM and satisfies 
both of the requirements described in Section IV-A. 

In PRM, the temporal change is taken notice to detect the 
transition point as illustrated in Fig. 2. In contrast, the 
receiving rate change is taken notice in PSM. Assuming 
CBR cross-traffic, Fig. 3 illustrates the concept of PSM. Fig. 
3 depicts the slope of a series of the per-packet receiving 
rates that is (i) steep at first but (ii) gradually changes to be 
gentle and (iii) finally comes to be horizontal. PSM is based 
on the observation that (i) if the per-packet sending rate is 
less than the available bandwidth, a series of the per-packet 
receiving rates will increase linearly. Then, (ii) if the per-
packet sending rate begins to exceed the available bandwidth, 
the slope of the per-packet receiving rate series begins to be 
gentle. After this, the UDP probing packets begins to push 
the cross-traffic aside. Since the acceleration of pushing 
aside declines gradually during the competition, the slope 
continues to be gentle. Finally, (iii) if the per-packet sending 
rate begins to exceed the effective UDP throughput, the tight 
link is momentarily saturated, so the slope becomes 
practically horizontal. 

Namely, the first transition point from (i) to (ii) in PSM 
corresponds to the single transition point of PRM. The per-
packet receiving rate at the first transition point in PSM 
becomes the estimated available bandwidth. The effective 
UDP throughput can be estimated by observing the receiving 
rate at the second transition point from (ii) to (iii) in PSM. 
PathChirp, Pathload, PathQuick and other PRM-based 
methods focus on only the first transition point in PSM. In 
contrast, PathQuick2 is the first method which focuses on 
both of two transition points in PSM.  

A PathQuick2 sender is unchanged from a PathQuick 
sender, whereas a PathQuick2 receiver is modified based on 
PSM. Consequently, the PathQuick2’s packet train structure 
is the same as the PathQuick’s one. In [6], we have validated 
that PathQuick’s estimation duration is sufficiently short and 
its probing load is light enough for real-time communication. 
The whole packet train length of PathQuick2 does not suffer 
any stretch than PathQuick, while PathQuick2 has additional 
capability that it can estimate the effective UDP throughput 
from a single packet train. Consequently, PathQuick2 
satisfies the first requirement. Furthermore, the total packet 
size of the single packet train of PathQuick2 does not suffer 
any increase. Hence, PathQuick2 also satisfies the second 
requirement. 

Our PSM complements and extends the large body of 
work on network measurement. For example, if we apply the 
concept of PSM to pathChirp, the modified version of 
pathChirp will enable us to estimate the two metrics 
simultaneously from a single packet train. 

Note that we confirm no packet loss occurs due to the 
PathQuick2 measurement unless highly heavy congestion 
condition, since the excess of available bandwidth is 
momentarily and the impact is absorbed by router queues. 

 
Figure 3.  Concept of the probe slope model (PSM). 

D. Recursive Effective UDP Throughput Estimation 
Algorithm 
The assumption of CBR cross-traffic in Section IV-C 

does not always hold true in real networks due to intermittent 
and bursty cross-traffic. Fig. 4 depicts the uneven per-packet 
receiving rate of a typical packet train in real networks. From 
the point of microscopic view, due to the bursty cross-traffic 
effect, the slope of the per-packet receiving rate series may 
never be regarded as horizontal at last, or may be regarded as 
horizontal at very early stage by mistake. 

In order to mitigate the bursty cross-traffic effect, we 
develop the recursive effective UDP throughput estimation 
algorithm. In the algorithm, we analyze the slope from the 
point of macroscopic view. Basic idea is that, we divide a 
long section of a packet train into two short sections. If the 
ratio of averaged receiving rate of the long section to that of 
the latter short section is greater than a predefined value, we 
continue the divide and compare operations, in a recursive 
manner, until the ratio becomes lower than the predefined 
value (see Fig. 4). 

More specifically, Fig. 5 shows the pseudo code of the 
algorithm. Let us define the receiving time of i -th packet as 

rcv
it , the total packet size from the first packet to i -th packet 

as is , the packet sequence number of the long section’s first 
packet as start  and the packet sequence number of the short 
section’s first packet as mid . The long section length at j -th 
recursive iteration is rcv

start
rcv
N

long
j ttT  , and The short section 

length at j -th recursive iteration is rcv
mid

rcv
N

short
j ttT   where 

,2,1j . The averaged receiving rate of the long section at 
j -th recursive iteration is   long

jstartN
long
j TssR  , and the 

averaged receiving rate of the short section at j -th recursive 
iteration is   short

jmidN
short
j TssR  . At each recursive 

iteration, mid  is updated to   1 Nstartmid  where the 
division factor   is the ratio of number of packets between 
the long section and the short one. Also  start  is updated to 

midstart  . The division factor   controls the number of 
packets of a short section. For example, if 2  and 24N , 
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the first long section (covered by the lowest horizontal blue 
line) has 24 packets, and the first short section (covered by 
the second lowest horizontal blue line) has 24 / 2 = 12 
packets. Also, the values of mid  in the first, second and third 
recursive iteration are    1321241  ,    19212413   
and    22212419  , respectively. The recursive 
algorithm stops if long

j
short
j RR )1(   where   is the nearness 

threshold, and the estimated effective UDP throughput 
becomes   2long

j
short
j RR  . 

We are currently studying other ways to mitigate the 
bursty cross-traffic effect. One of them is to use the 
exponentially weighted moving average (EWMA). Another 
way is to use the Kalman filter. 

 
Figure 4.  Recursive effective UDP throughput estimation algorithm. 

 
function estimate_effective_udp_throughput () { 
            1start  
            for ( 1j ; 1 startN ; j ) { 
                          1 Nstartmid  
                        rcv

start
rcv
N

long
j ttT   

                        rcv
mid

rcv
N

short
j ttT   

                          long
jstartN

long
j TssR   

                          short
jmidN

short
j TssR   

                        if ( long
j

short
j RR )1(  ) { 

                                    return   2long
j

short
j RR   

                        } 
                        midstart   
            } 
} 

Figure 5.  Pseudo code of the recursive estimation algorithm. 

E. Implementation 
We implemented a prototype PathQuick2 system as 

ActiveX components that can run on Windows OS (see Fig. 
6). Thus, the PathQuick2 system can be easily integrated into 
real-time communication applications. 

 

 
Figure 6.  Snapshot of the prototype PathQuick2 system. 

V. EVALUATION 
We evaluated PathQuick2 regarding various aspects; 

estimation duration, probing load and estimation accuracy. 

A. Parameter Choice for Quantitative Evaluation 
Before going into details of the evaluation, we will 

explain how we choose the values of several parameters used 
for the quantitative evaluation. 

1) Maximum Probable Bandwidth maxB  
In this evaluation, we suppose a video conferencing as a 

real-time communication application since the possible 
variation range of video sending rate is wider than video chat. 
A maximum video sending rate of a current commercial 
product is 6 Mbps [10], and maximum video sending rates of 
commercial products continues to increase in recent years. 
With an eye to the future, we doubled the rate, and thus we 
choose 12 Mbps as the maximum video sending rate. Hence, 
we choose 12 Mbps as the maximum probable bandwidth of 
a probing packet train maxB . 

To realize the 12-Mbps target of maximum probable 
bandwidth, we set the equal time interval 1quickT  ms, the 
packet size of first packet 11 P  byte and the increase 
amount of the packet size 12P  bytes. We set the packet 
size of last packet 489,1NP  bytes. This means a packet train 
of PathQuick2 consists of 12512/)1489,1(1 N  packets. 
So, 912,11001.0489,18max  quickN TPB  kbps. This 
practically covers the 12-Mbps target. 

2) RTT 
Since the average one-way delay (OWD) in current 

Japanese Internet use among 13 major Japanese cities has 
been reported to be 26 ms in Table 1 of [35], we set the end-
to-end round trip time (RTT) to 52 ms in our evaluation. 

B. Experimental Setup 
We did simulations using an ns-2 network simulator [36] 

to obtain the evaluation results in a controllable and 
repeatable manner. Fig. 7 shows the dumbbell topology, with 
a single bottleneck link, of the simulations. Since we intend 
to explore PathQuick2 under the condition that the 12-Mbps 
maximum video sending rate is moderately close to the 
physical capacity of the bottleneck link, e.g., approximately 
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80%, we choose 16 Mbps as the physical capacity of the 
bottleneck link. We set the RTT to 52 ms. The physical 
capacity and OWD of each link are also shown in Fig. 7. We 
conducted two types of simulation using different cross-
traffic over the same topology. The cross-traffic in the first 
simulation is multiple UDP flows with Poisson packet 
arrivals, whereas the second one is multiple TCP flows. In 
order to measure actual effective UDP throughput (i.e., the 
right answer to the PathQuick2’s estimates) during running 
of the cross-traffic, we emulated Iperf, a direct UDP 
throughput measurement tool. The sending rate of the 
emulated Iperf is set to 12 Mbps with CBR in all the 
simulations since the maximum probable bandwidth of 
PathQuick2 is 12 Mbps. Since the measurement time 
reported for Iperf is 10.0 s [14], and Iperf transmits UDP 
packets with 1,470 bytes, we emulate the behavior 
accordingly. The timing of the estimation with PathQuick2 
and the measurement with Iperf are separated to avoid 
interference between each other’s outputs. 

 

 
Figure 7.  Topology with a single bottleneck link. 

C. Estimation Duration 
We measured the estimation duration of PathQuick2. It is 

the sum of the packet train length )(quick
trainT , transmission (or 

serialization) delay, queuing delay at routers, and RTT. 
According to Section V-A, )(quick

trainT  is calculated to 
124)1125(1)1()(  NTT quick

quick
train  ms and the RTT is 52 

ms. We observed the average estimation duration of 
PathQuick2 over the two types of simulation is 182 ms. This 
duration is shorter than the 400-ms OWD requirement of 
two-way video communication recommended by ITU-T [37]. 

D. Probing Load 
We measured the total packet size of a single packet train 

(i.e., intrusiveness). PathQuick2’s total packet size of a 
single packet train is 1+13+, … , +1,489 = 93.1 kB. In 
contrast in Iperf, its total packet size of 10.0-s measurement 
with the 12-Mbps sending rate is as much as 10.012 / 8 = 
15 MB. Thus, the probing load of PathQuick2 is 15 MB / 
93.1 kB = 161.1 times as light as Iperf. 

E. Estimation Accuracy with Poisson UDP cross-traffic 
We evaluated the estimation accuracy of PathQuick2 

with Poisson UDP cross-traffic with a 1,000-byte packet size. 
Note that the Internet traffic has been shown to be well 
represented by the Poisson model at small time scales such 
as less than 1 s [38] or 5 s [39], and the estimation duration 
of PathQuick2 is less than 1 s as shown in Section V-C. The 
averaged cross-traffic load aggregated at the entrance of 

bottleneck link was varied from 4 to 16 Mbps, and thus the 
available bandwidth was varied from 12416   Mbps to 

01616   Mbps. We mainly focus on the estimation 
accuracy of the effective UDP throughput rather than the 
available bandwidth, since we have already validated the 
latter in [6]. We use simulations to better understand the role 
of the several PathQuick2 parameters. We varied the division 
factor   and the nearness threshold   in the recursive 
effective UDP throughput estimation algorithm described in 
Section IV-D, while keeping other parameters constant as 
described in Section V-A. 

First, we assess the impact of the division factor  . A 
larger   leads to the less number of packets of short sections. 
Fig. 8 demonstrates the effect of the division factor  . 
Actual effective UDP throughput measured by the emulated 
Iperf is plotted with black circles. We observed that 0.2  
leads to somewhat wide range estimation error, and 4.2  
leads somewhat underestimate in particular when there is 
enough available bandwidth (the right end in Fig. 8). So, we 
choose 2.2 . 

Next, we assess the impact of the nearness threshold  . 
This parameter affects the convergence condition of the 
recursive algorithm. Fig. 9 demonstrates the effect of the 
nearness threshold  . A smaller   leads to tighter 
convergence condition, and we observed that increasing the 
estimation accuracy. Based on the results, we choose 

05.0 . 
We extract the estimation results with only the case of 

2.2  and 05.0  in Fig. 10. We observed PathQuick2’s 
estimates are conservative, i.e., on the safe side from the 
point of view of real-time communication. Its maximum 
estimation error is approximately 2 Mbps. Considering that 
its estimation duration is sufficiently short and also its 
probing load is 161.1 times as light as Iperf, we believe that 
the estimation accuracy of PathQuick2 is reasonable in 
practical use for real-time communication. 
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Figure 8.  Estimation accuracy and the variation of division factor  . 
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Figure 9.  Estimation accuracy and the variation of nearness threshold  . 
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Figure 10.  Estimation accuracy where 2.2  and 05.0 . 

F. Estimation Accuracy with TCP cross-traffic 
We evaluated the estimation accuracy of PathQuick2 

with multiple TCP cross-traffic. Akamai has reported [40] 
that the global average TCP throughput is approximately 2 
Mbps over the current Internet. Since the bottleneck capacity 
is 16 Mbps, we set the maximum number of TCP flows to 16 
/ 2 = 8 flows. In this simulation, we varied the number of 
TCP flows from 4 to 8 flows. We use 2.2  and 05.0 . 

Fig. 11 shows the estimation results. The 10.0-s 
measurement results with the emulated Iperf are quite nearly 

12 Mbps, consistently. As described in Section II, this is due 
to the responsive and elastic nature of TCP and the 
unresponsive nature of UDP. During the 10.0-s measurement, 
the emulated Iperf rapidly take the TCP’s bandwidth away 
up to 12 Mbps. We observed PathQuick2’s estimates are also 
consistent; its average estimation errors are approximately 
from 2 to 3 Mbps underestimate. Although the maximum 
estimation error, approximately 5 Mbps, is larger than the 
case of Poisson UDP cross-traffic, PathQuick2’s estimates 
are also still on the safe side. 

Note that TCP flows aggressively consume the available 
bandwidth in general. Indeed, we confirmed that the 
available bandwidth is always almost zero throughout the 
simulations, even when there is neither PathQuick2 nor 
emulated Iperf traffic. In terms of the absence of available 
bandwidth, the conditions may be similar to the left end of 
Fig. 10. Although PathQuick2’s estimates range from 5 to 9 
Mbps in the left end of Fig. 10, the ones range from 7 to 12 
Mbps in Fig. 11, i.e., higher range. This implies PathQuick2 
can chase the effective UDP throughput without dependent 
on the transport protocol of cross-traffic. 
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Figure 11.  Estimation accuracy vs. multiple TCP cross-traffic flows. 

VI. DISCUSSION 
The greedy behavior of real-time communication 

applications described in Section I leads to unfairness 
between UDP and TCP, and may cause the congestion 
collapse from undelivered packets [8]. To avoid this, TCP-
friendly rate control (TFRC) [41] is proposed for real-time 
communication. A TFRC-based real-time communication 
application can control the video sending rate and maintain 
the inter-protocol’s fairness. Since the TFRC only uses the 
information of packet size, RTT and packet loss rate for its 
rate control, the knowledge of the available bandwidth and 
the effective UDP throughput potentially improve further its 
rate control mechanism. We are currently developing an 
adaptive TFRC-based rate control method for real-time 
communication which combines PathQuick2 and the 
adaptive rate control method [42] that is developed in our 
research group, and preliminary results are encouraging. 

VII. CONCLUSION AND FUTURE WORK 
PathQuick2 is a method that can quickly and 

simultaneously estimate both of the available bandwidth and 

( 
( 

( 



the effective UDP throughput from a single packet train. 
Through an evaluation, we confirmed that PathQuick2 
completes the estimation in 182 ms. We also confirmed that 
its probing load is about 90 kB which is more than 160 times 
as light as a direct measurement of effective UDP throughput. 

In future work, we will exhaustively analyze the 
relationship among the estimation accuracy, the division 
factor   and the nearness threshold   to further improve the 
estimation accuracy. We also plan to conduct large-scale 
experiments over the Internet with the prototype system to 
validate PathQuick2 in real networks. 
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