
“3D-PP”: Three-Dimensional Visual Programming System

Takashi Oshiba and Jiro Tanaka

University of Tsukuba

1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan

e-mail: {ohshiba, jiro}@softlab.is.tsukuba.ac.jp

1 Introduction

Our research group [1] is doing research in the field
of visual programming. We are interested in three-
dimensional visual programming environment in par-
ticular. The conventional visual programming systems
mainly focused on two-dimensional pictorial program-
ming. A big problem is that two-dimensional visual
programming systems fail to manage a lot of pictorial
programming elements. This paper proposes a new
pragmatic three-dimensional visual programming sys-
tem “3D-PP” to solve the problem.

2 Programming Paradigm of “3D-PP”

“3D-PP” is based on the concurrent logic program-
ming language GHC [3] which is one of the high level
declarative programming languages. A declarative pro-
gramming language is suitable to be visualized by a vi-
sual programming system because visual programming
is also declarative. A logic programming language is
also suitable to be visualized because a logic program-
ming language requires comparatively fewer number of
programming elements than a procedural language.
The clause of GHC is composed as follows:

predicates(arguments, . . .) :- guard | body.

Both the guard and body can contain more than two
goals. The principal program elements of GHC are
atom, list, input-output data, goal and built-in goal.
The programmers of “3D-PP” can describe visual

programs as follows:

2.1 Three-Dimensional Icon

The visual program of “3D-PP” is built by com-
bining pictorial programming elements. We prepare
three-dimensional miniature objects as the principal
programming elements mentioned above (Figure 1).

The three-dimensional miniature objects are placed as
three-dimensional icons. When programmers click one
of the three-dimensional icons, the pictorial program-
ming element appears in the center of the window. The
shape of the three-dimensional icon corresponds to its
original pictorial programming element.

Figure 1. Three-dimensional icons.

2.2 Direct Manipulation

The left side of :- in the textual GHC code is vi-
sualized as a parent pictorial programming element in
“3D-PP” (parent goal). The right side of :- in the
textual GHC code is visualized as a child pictorial pro-
gramming element (child goal). The visual program of
“3D-PP” is composed of hierarchical nesting boxes of
pictorial programming elements.
When the programmers manipulate a three-

dimensional program element by using a mouse, the
program element should be moved in accordance with
the mouse movement. However, they have the difficulty
to specify the position of the program element because
the mouse is two-dimensional. To solve this problem,
we apply direct manipulation technique [2] to operate
a three-dimensional program element.

2.3 Extended Drag-and-Drop Technique

When a programmer describes a visual program, the
programmer often move a child goal into its parent
goal by using drag-and-drop of mouse. However, the
drag-and-drop technique in three-dimensional space is
difficult for programmers.

To solve the problem, we propose extended three-
dimensional drag-and-drop technique to suit a three-
dimensional space. We prepare a plane which restricts
the movement of a program element (Figure 2). The
restrictive plane is always parallel to the display of
a computer. The normal of the restrictive plane is
(dx, dy, dz). When programmers move the program el-
ement while holding down the left button of the mouse,
the program element is moved along the restrictive
plane. The programmers can move the program ele-
ments in the three-dimensional space as if the program
elements are placed in a two-dimensional space. The
programmers do not need to mind whether the goal
which is being dragged is collided with the other goal
to be dropped or not. The program element is rep-

xy

z

(dx, dy, dz)

viewpoint
ground

display

restrictive plane

Figure 2. The restrictive plane.

resented semi-transparently while it is being dragged.
Other program elements are not hidden by this semi-
transparent representation.

3 Sample Program

GHC sample code: begin

:-module main.
main:-primes(1000,LP),io:outstream([print(LP),nl]).
primes(Nth,LP):-gen_primes(AB,Ps),

pkup(Ps,Nth,AB,LP).
gen_primes(AB,Ps):-gen(AB,2,Ns)@lower_priority,

sift(Ns,Ps).
gen(abort,_,Ns):-Ns=[].
alternatively.
gen(AB,N,Ns):-Ns=[N|Ns2],N2:=N+1,gen(AB,N2,Ns2).
sift([],Zs):-Zs=[].
sift([P|Xs],Zs):-Zs=[P|Zs2],filter(P,Xs,Ys),

sift(Ys,Zs2).
filter(_,[],Ys):-Ys=[].
filter(P,[X|Xs],Ys):-X mod P=\=0 |

Ys=[X|Ys2],filter(P,Xs,Ys2).
filter(P,[X|Xs],Ys):-X mod P=:=0 |

filter(P,Xs,Ys).
pkup([P|_], Nth,AB,LP):-Nth=:=1 |

LP=P, AB=abort.
pkup([_|Ps],Nth,AB,LP):-Nth=\=1 |

Nth2:=Nth-1,pkup(Ps,Nth2,AB,LP).

GHC sample code: end

The sample code of GHC shown above is the pro-
gram which can calculate and output the value of the
1000th prime number. primes is the goal which calcu-
lates and outputs the value of the 1000th prime num-
ber. gen primes generates a sequence of prime num-

bers. pkup picks up the value of the 1000th prime num-
ber and transfers to primes. io:outstream registers
the output data from primes. Figure 3 is the visual
program which corresponds to the sample code ofGHC.

Figure 3. Snapshot of “3D-PP.”

4 Related work

PrologSpace[4] adopt three-dimensional program
representation based on Prolog. PrologSpace is com-
posed of at least four panes. In this paper, our visual
programming system “3D-PP” is composed of a single
window.

References

[1] Takashi Oshiba and Jiro Tanaka: Three-
Dimensional Modeling Environment “Claymore”
Based on Augmented Direct Manipulation Tech-
nique, In Proceedings of The 8th Interna-
tional Conference on Human-Computer Interac-
tion (HCI International ’99), Munich, Germany,
August 22th to 27th, 1999 (to appear).

[2] Ben Shneiderman: Direct Manipulation: A Step
Beyond Programming Languages, IEEE Com-
puter, Vol.16, No.8, pp.57-69, 1983.

[3] Kazunori Ueda: Guarded Horn Clauses, ICOT
Technical Report, TR-103, 1985.

[4] Masoud Yazdani and Lindsey Ford: Reducing the
Cognitive Requirements of Visual Programming,
In Proceeding of 1996 IEEE Symposium on Visual
Languages (VL’96), pp.225-262, 1996.

