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Abstract—Despite the remarkable success of deep-learning in
image and video recognition, constructing real-time recognition
systems for computationally intensive tasks such as spatio-
temporal human action localization is still challenging. As compu-
tational complexity of these tasks can easily exceed the capacity of
edge devices, inference must be performed in remote (cloud) envi-
ronments. But then, recognition accuracy is subject to fluctuating
networking conditions in best-effort networks due to compression
artefacts incurred from low-bitrate video streaming. To improve
overall recognition accuracy under various networking condi-
tions, we propose SwitchingNet, an edge-assisted inference model
switching method. In SwitchingNet, we train multiple recognition
models specialized towards different levels of image quality and
a neural switching model for dynamically choosing among the
specialized recognition models during system operation. Switch-
ing decisions are made at the edge given an image quality vector
calculated from compressed and uncompressed frames. In the
experiments, we show that our approach can on average sustain
higher recognition accuracy than plain recognition systems under
heavily fluctuating networking conditions. Also, our switching-
based recognition approach is far less computationally intensive
than competing ensemble methods and allows to significantly
reduce cloud computing costs.

I. INTRODUCTION

Deep learning has brought enormous advancements in the
area of image and video recognition. Today, many openly
available deep-learning-based implementations of recognition
tasks such as object detection (e.g. [1]) have reached levels of
accuracy which can be regarded sufficient for various real-
world applications. Such applications include for example

automated surveillance, with actual tasks ranging from e.g.
license plate recognition [2] to livestock counting [3]. Fur-
thermore, for simple recognition tasks and low image resolu-
tions these applications have become practical, as inference
complexity has arrived at levels at which smartphones, AI
cameras or AI-enabled edge devices are sufficient for attaining
execution speeds considered real-time.

Despite these successes, high inference complexity still
remains an issue in many advanced cases. For example, one
such advanced case occurs when a more sophisticated and
computationally challenging recognition task such as spatio-
temporal human action localization [4], [5] is demanded. In
contrast to comparatively simple single-shot object detection
(e.g. [1]), the complexity of human action detection often
scales linearly with the number of persons in a scene (e.g.
in an application of [6]). Moreover, the desire to increase
image resolutions (for recognition at smaller scale and larger
distance) or frame-rates further increases the computational
cost.

In these computationally demanding cases, inference com-
putation is inevitably pushed from the edges to remote (e.g.
cloud) environments, which implies streaming compressed
video between edge and remote environment over commu-
nication networks [7].

Then, however, application QoE (i.e. recognition accuracy)
is greatly influenced by networking conditions. This is because
as video is streamed from edge devices to the cloud, it is



compressed by video codecs such as H.265 [8] to a given
bitrate that is limited by network throughput. Compression
deteriorates image quality (due to compression artefacts), and
image quality deterioration causes recognition errors [9], [10]
which become more severe as bitrate decreases. Hence, as in
many real-world cases networking includes wireless segments
and QoS is only best-effort, drops in bitrate and thus also
recognition accuracy must be expected.

One approach to reduce the influence of the networking
conditions on recognition accuracy is to train recognition mod-
els such that they become more robust against compression
artefacts. For example, the recognition model’s training data
can be augmented with images artificially distorted by video
codecs at lower bitrates. This improves recognition accuracy
at lower bitrates because the model becomes accustomed to
compression artefacts.

However, doing so adversely affects recognition accuracy at
higher bitrates, as overall accuracy is limited by the recogni-
tion model’s capacity (i.e. the size of the neural network).

To overcome this, increasing the model capacity is a valid
approach. For example in [11], an ensemble model combining
recognition models specialized for different bitrate regions is
proposed.

However, increasing recognition model capacity also in-
creases inference complexity, and hence incurs additional
cloud and networking costs. For example, the ensemble ap-
proach in [11] requires at least twice the amount of computa-
tion of a single recognition model. Depending on the use-case
such a rise in cost can be detrimental to profitability and hence
using larger models often ruled out as an option.

Therefore, improving recognition accuracies over a wide
range of video streaming bitrates without excessively increas-
ing computational costs necessitates other approaches.

To this end, we propose SwitchingNet, which is an edge-
assisted inference model switching method (the general system
architecture is shown in Fig. 1). SwitchingNet assumes an
array of recognition models, where each model is special-
ized towards a specific image quality range by training with
video data distorted at different compression strengths. During
system operation, we dynamically switch between models
on a frame-by-frame basis. To do so, we first calculate an
image quality vector by comparing distorted and undistorted
video frames. As this calculation requires access to the un-
compressed frame it must necessarily be performed at the
edge device. Then, we employ a recurrent neural network
(RNN) for selecting a specific recognition model from the
array given the calculated image quality vector. This RNN is
trained towards outputting the optimal choice of recognition
model by means of an unsupervised method inspired from
reinforcement-learning.

Due to our model switching approach, inference becomes
more robust against compression artefacts at various degrees
and recognition accuracy is improved overall. In the experi-
ments, we show this by evaluating recognition accuracy in a
scenario where bitrate fluctuates heavily, simulating the effect
of changing networking conditions.

Furthermore, in contrast to ensemble approaches such
as [11], our approach has the advantage that only a single
recognition model has to be evaluated at a time, and hence
inference complexity is greatly reduced. However, in com-
parison to a plain inference system (only a single model
and no switching), computational complexity is increased by
image quality calculation and RNN inference. However, this
additional amount of computation is small, and as we show
in the experiments, can easily fit within AI-enabled or GPU-
enabled edge devices.

The paper is structured as follows. In Section II we discuss
other works related to this paper. Our method and system is
then described in Section III, and the results of our experimen-
tal evaluation are presented in Section IV. Section V concludes
our paper.

II. RELATED WORK

Many previous works consider the impact of video com-
pression and networking in remote recognition systems, and
several methods for improving overall recognition accuracy
have been proposed.

Most methods for improving accuracy can be classified
into two categories: (a) controlling or enhancing compression
with recognition-awareness in order to use available bandwidth
resources more efficiently without impairing accuracy, and
(b) making recognition more robust against the issues caused
by compression or otherwise exploiting information from
compressed video streams.

The former category of methods includes region-of-interest
(RoI) based approaches such as [12]–[15]. These approaches
for example perform fast object detection on an edge device
and reduce image quality and bitrate outside these detected
regions, which turns out to not be detrimental to accuracy for
some tasks. Another approach [16] proposes a recognition-
aware image preprocessing stage which alters image con-
tent before compression. Furthermore, approaches such as
those in [17]–[19] propose replacing or augmenting traditional
codecs such as H.265 with recognition-aware neural networks
in order to improve accuracy. Other methods such as [20], [21]
try to maximize overall recognition accuracy in the presence
of multiple video streams by improving the allocation of
bandwidth resources among streams in a recognition-aware
manner. Another approach [22], optimizes encoder bitrates and
resolutions dynamically based on video content in order to
improve accuracies.

The latter category of methods includes approaches such as
those described in [11], [23]–[25] which improve recognition
accuracies at model side for example by using additional
information which can be obtained from the decoder (such
as motion vectors), or by ensemble techniques and data
augmentation methods. Among these works, in particular [23],
[24] target the spatio-temporal action recognition task, which
we also adopt in our experiments.

III. METHOD AND SYSTEM

In this work we consider the remote recognition system
architecture shown in Fig. 1. It contains functionality common



to video streaming (encoding and decoding) and recognition,
but also implements our model switching approach which is
broken down into three parts:

1) Image quality assessment which generates an image
quality vector.

2) Computing a model choice based on the generated image
quality vector using an RNN. This RNN is trained
towards making optimal selection decisions among 𝑁

recognition models using an unsupervised method in-
spired by reinforcement-learning.

3) Transmitting the model choice from edge to cloud
alongside the packet stream of the encoded video, and
using the chosen model for inference.

Besides what is shown in Fig. 1, we also assume that video
streaming is adaptive, i.e. that encoder bitrate is controlled
as to not surpass the maximum achievable throughput. This
can be achieved for example by predicting throughput using
methods such as the one proposed in [26].

In the following sections we describe in detail our ap-
proaches to image quality assessment, neural recognition
model selection and unsupervised training.

A. Image quality assessment

In this work, we propose using full-reference image quality
metrics as basis for model switching. In general, image quality
can be assessed using full-reference or no-reference metrics.
In the context of compression, full-reference metrics such
as PSNR (peak signal-to-noise ratio) measure image quality
by comparing the compressed image with the uncompressed
image. In contrast to this, no-reference metrics such as the
one proposed in [27] determine image quality by looking at
the compressed image only. While in our context, no-reference
metrics would seem to be advantageous because they can be
evaluated in the cloud only without putting computational load
on the edge device, these metrics themselves make use of
large neural networks and thus negatively affect cloud costs.
Therefore, we resort to full-reference metrics and calculate
them on the edge device.

Furthermore, in order to allow the RNN to make better
decisions, a vector consisting of multiple full-reference metrics
capturing several aspects of image quality is calculated and
passed to the RNN. In particular, given the uncompressed
image 𝑥𝑐𝑖 𝑗 and the compressed image 𝑥𝑐𝑖 𝑗 (𝑐 denotes the RGB
color component, 𝑖 and 𝑗 denote the vertical and horizontal
pixel indices ranging from 1 . . . 𝐻 and 1 . . .𝑊 , respectively),
we first consider the root mean squared error (RMSE):

RMSE(𝑥, 𝑥) =
√︄

1
3 · 𝐻 ·𝑊

∑︁
𝑐𝑖 𝑗

(𝑥𝑐𝑖 𝑗 − 𝑥𝑐𝑖 𝑗 )2 . (1)

The RMSE serves as a basic metric for measuring the deviation
between uncompressed and compressed images.

Furthermore, to quantify spatial variation of image quality
within an image, we propose the following LRMSE metric,
which is calculated by first applying Laplacian filters to the

compressed and uncompressed images, and then calculating
the RMSE:

LRMSE(𝑥, 𝑥) = RMSE(𝐿 (𝑥), 𝐿(𝑥)) , (2)

where 𝐿 denotes a Laplacian filter.
Finally, to capture image quality across different scales we

downscale the images to respectively 1/2, 1/4, 1/8 and 1/16
of the original resolution, and calculate RMSE and LRMSE
also for these respective scales. This leads to an image quality
vector 𝐼𝑚 of in total 10 components, and captures multiple
aspects of image quality.

B. Stateful model switching

In order to optimally select a recognition model from an
image quality vector, we use a recurrent (stateful) neural
network model (henceforth called switching model). This is
because many advanced video recognition models are also
stateful by design. For example, a video recognition model
may consider a sliding window of video frames as input for
each time step, or consist of recurrent neural network models
by itself. Hence, considering image quality on a frame-by-
frame basis is not sufficient as evidence to make optimal model
selection decisions, as recognition accuracy will to some extent
also depend on the history of image qualities.

To this end, we propose feeding the ten-dimensional image
quality vector calculated as described in the previous Section
into a three-layer stacked LSTM (Long Short Term Memory)
with 64 feature and output dimensions. The outputs of the
LSTM are further fed into a three layer MLP (multi layer per-
ceptron) with 64 feature dimensions and softmax activations
in the final layer, in order to produce the final output of the
model at each time step. This final output is a 𝑁-dimensional
vector assigning a probability 𝑝𝑛 to each of the 𝑁 recognition
models.

Then, during system operation, we choose the model 𝑛 with
highest probability 𝑝𝑛 for video recognition inference.

Finally, note that when the recognition models are stateful
the state itself must be shared between the 𝑁 models. When the
recognition model architecture is for example based on sliding
windows of input frames this sharing can be straightforward.
When the architecture however contains hidden (learned)
states then extra care must be taken during training in order to
ensure states from different models are compatible with each
other.

C. Unsupervised training

In order to train the parameters of our switching model
(denoted by 𝜃), we use an actor-critic method inspired by the
A3C algorithm [28]. The training goal is to make the output
probabilities 𝑝𝑛 maximise an expectation value involving a
recognition accuracy metric. Similar to A3C which is based
on policy gradients, our method tries to improve a reward-
based loss function L(𝜃) using gradient descent updates.
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Fig. 2: Reinforcement training apparatus used for automated
tuning of the SwitchingNet RNN model.

Below, we describe the calculation of this loss function,
which is given by:

L(𝜃) = − E
𝑥, 𝑥̃,𝑛̂

∑︁
𝑡

(𝑅𝑡 (𝑥, 𝑥, 𝑛̂|𝜙∗) −𝑉𝑡 (𝑥, 𝑥 |𝜙∗)) log 𝑝𝑡 ,𝑛̂𝑡 (𝜃) .

(3)
A simplified computational flow for evaluating L is schemat-
ically depicted in Fig. 2.

First, in Eqn. 3, the expectation E is over triples (𝑥, 𝑥, 𝑛̂),
where 𝑥 and 𝑥 denote uncompressed and compressed video
sequences and 𝑛̂ denotes a time series of model choices
(selections), respectively. The expectation and is approximated
by a fixed number (the batch size) of samples which are
generated as follows.

1) First a short uncompressed sequence 𝑥𝑡𝑐𝑖 𝑗 (with 𝑡 denot-
ing time) is sampled from a training dataset.

2) Then, this uncompressed sequence is fed into an en-
coder/decoder compression pipeline which outputs the
compressed sequence 𝑥𝑡𝑐𝑖 𝑗 . In order to generate com-
pressed video sequences at various qualities, we set the
bitrate target parameter to a random value sampled from
a predefined distribution.

3) Next, a time series 𝐼𝑡𝑚 of image quality vectors is
calculated from the video sequences 𝑥𝑡𝑐𝑖 𝑗 and 𝑥𝑡𝑐𝑖 𝑗 as
described in Section III-A.

4) The switching model is applied to 𝐼𝑡𝑚, giving a time
series of probability vectors 𝑝𝑡𝑛 (the selection policies).

5) From these probability vectors, we sample the time
series of model choices 𝑛̂𝑡 .

Next, we explain the calculation of the returns 𝑅𝑡 and the
value estimation 𝑉𝑡 from the sampled triples. The returns are

defined as a discounted sum of the rewards 𝑟𝑡 .

𝑅𝑡 =

𝑇−1∑︁
𝑠=𝑡

𝛾𝑠−𝑡𝑟𝑠 + 𝛾𝑇−𝑡𝑉𝑇 , (4)

where 0 < 𝛾 < 1 is a factor reducing the influence of future
rewards on the training of the model choice at time 𝑡, and 𝑇

is the sequence length.
Now, to calculate the rewards 𝑟𝑡 at each time step 𝑡, first

the uncompressed video sequence 𝑥 is fed through the 𝑁-th
recognition model, which is assumed to have been trained
for the highest image quality. This gives a time series of
recognition results which we treat as a proxy for ground truth
annotations. This makes our training algorithm unsupervised,
i.e. manual ground truth annotations are not required, which
facilitates tuning the switching model towards new data in
an automated fashion. We also found that when the 𝑁-th
recognition model is accurate enough, then using these proxy
annotations instead of manual ground truth annotations led to
similar results accuracy-wise.

Next, we feed the compressed video sequence 𝑥 through
the series of models specified by 𝑛̂, which gives a time series
of (distorted) recognition results. These recognition results are
compared to the proxy annotations by means of a recognition
accuracy measure suiting the task (we give an example in
Section IV-C) evaluated on a frame-by-frame basis, and these
per-frame accuracies are treated as the rewards 𝑟𝑡 .

Furthermore, in Eqn. 3 an estimation 𝑉𝑡 of the value E[𝑅𝑡 ]
is subtracted from the returns 𝑅𝑡 . According to common
theory in reinforcement learning, subtracting the expectation
of 𝑅𝑡 leads to variance reduction and improves training
convergence. Here, in order to estimate the expectation as
𝑉𝑡 (𝑥, 𝑥 |𝜙∗), we employ a combination of a convolutional
neural network (CNN), LSTM and MLP which inputs 𝑥 and
𝑥 and is parametrized by 𝜙. These networks are only used
during training and are not relevant for actual model switching.
The parameters 𝜙 are trained simultaneously with 𝜃 using
gradient descent updates of the L2 loss function LV (𝜙) which
is defined as:

LV (𝜙) = E
𝑥, 𝑥̃,𝑛̂

∑︁
𝑡

(𝑉𝑡 (𝑥, 𝑥 |𝜙) − 𝑅𝑡 (𝑥, 𝑥, 𝑛̂|𝜙∗))2 . (5)

In the above, 𝜙∗ is not subject to gradient computation and
denotes the value of 𝜙 obtained from the previous gradient
descent iteration.

With the given calculation of above loss functions, gradient
descent updates are performed by means of backpropagation.
In order to further speed up training convergence, we addi-
tionally employ the ADAM algorithm [29].

IV. EXPERIMENTS

A. Recognition task and dataset

In our experiments, we consider the recognition task of
spatio-temporal human action localization. This task includes
detecting and tracking persons in video, as well as classifying
the actions (activities) of each tracked person. In particular,



Fig. 3: Example image from our dataset with localized human
actions.

we consider detecting the following activities commonly per-
formed at construction sites: pushing a cart, ground leveling,
distance measurement, excavation and ground compaction.

For recognition model training and for training our proposed
switching model, we create a private dataset of surveillance
videos showing persons performing above actions (up to 5
persons simultaneously). The dataset contains over 1 hour of
annotated high-quality 1080p material recorded at 30 frames
per second, where annotations cover localization (bounding
boxes), tracking (person IDs) and classification (action labels).
For the purpose of final testing we reserve 10 video sequences
totalling 6 minutes, and use the remaining material for training.

As an example, we show an image from the dataset with
localized actions in Fig 3.

B. Accuracy metrics

We have to define accuracy metrics suited to our recognition
task for the purpose of performance evaluation and compari-
son, but also for the purpose of defining the rewards 𝑟𝑡 used
during unsupervised training of the switching model.

In the following, we make use of recall and precision as
accuracy metrics. They are defined as:

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

. (6)

Here, TP denotes the number of correctly detected (i.e. local-
ized and classified) actions, FN counts the actions which are
present in the annotations but undetected, and FP is the number
a detected actions which are not present in the annotations.

In addition, to take care of the edge cases, we augment the
definitions in Eqn. 6 when the denominators vanish. Then,
recall and precision are set to one.

C. Model training

Our approach requires an array of specialized recognition
models suitable for our task at hand. To this end, we build upon
a model architecture for spatio-temporal action localization
based on the work in [6]. This model architecture internally
breaks action localization down into the subtasks of human
detection and tracking, detection of objects relevant to the
actions (such as excavators, carts etc.), feature extraction

TABLE I: Recall and precision of our method and the base-
lines in a simulated scenario of dynamically changing bitrate.

Method Recall (%) Precision (%)

Low-Quality Model 85.3 87.6
High-Quality Model 83.0 85.1
SwitchingNet (Ours) 87.3 89.7

and action classification. After detection and tracking, the
contents of the detected bounding boxes are cropped from the
input frames. Then, after extracting features from these crops,
actions are classified by what is mostly an LSTM operating on
two-second temporal sliding windows of the extracted features.

In our experiments, we consider the special case of using
a pair of specialized action localization models, which are
trained as follows:

• High-quality model. This model is trained using our
dataset as-is, i.e. without any artificial distortion using
compression.

• Low-quality model. For this model, we retrain the action
classification part by making use of compressed videos.
To generate these videos, we use a software encoder [30]
with a random quantization parameter (QP) chosen uni-
formly from the range 37 to 51. Note, that for this encoder
QP = 1 produces highest quality and QP = 51 produces
lowest quality, so our generated videos are on the lower
end of the quality spectrum.

Furthermore, we train our switching model as described in
Section III-C using above dataset for a total of 8000 gradient
descent iterations. During training, we sample video sequences
with a length of 5 seconds from the dataset. Rewards are
defined to be the negative of the computed recall value, and
the discount factor is set to 𝛾 = 0.8. As batch size we choose
32, and ADAM is used with learning rate 0.001.

D. Evaluation setup

All testing is done using the built-in H.265 hardware en-
coder of a 20W-class edge device of type Jetson Xavier NX.
This encoder allows us to set a bitrate value and dynamically
change it at arbitrary points in time.

In the evaluations, we use this encoder for distorting our test
set in two different ways. First, we generate 15 compressed
datasets by encoding the test set with 15 different constant
bitrate settings approximately covering the range from 200
kbps to 4000 kbps. Second, we consider a simplified simula-
tion of a best-effort network (such as the uplink direction of an
LTE network) where the bitrate setting dynamically transitions
between two states of approximately 300 kbps and 3000 kbps
according to a Markov chain. In this case, we simulate the
Markov chain only once, and compress all 10 videos in the
test set according to the same simulation result to generate the
compressed dataset.

E. Accuracy evaluation and comparison

First, we examine the recognition performance of the gen-
erated recognition models at constant bitrate using the 15
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Fig. 4: Recall and precision of the baseline low-quality and
high-quality models at different constant bitrate settings.

compressed datasets generated as described in Section IV-D.
From the result shown in Fig. 4, it is evident that on average
each model is specialized to a specific range of bitrates, which
is exactly what we intended.

Next, we compare our approach to the baseline approaches,
i.e. to each single model without switching. For this we use
the dataset compressed at dynamically changing bitrate. The
results shown in Table I indicate that our method overall
performs better than the baselines in both recall and precision.
Also, when we examine the evolution of precision and recall
over time as shown in Fig. 5 (the evolution is averaged over
the 10 sequences in the test set), we can see that our method
performs best or close to best most of the time. Especially
when compared with the high-quality model, our method
mostly causes less severe accuracy drops when in the low-
bitrate state.

Also, note, that in Fig. 5 the specialized models are not
always best in the regime where they are meant to. This is
because the result in Fig. 4 is only valid on average over all
video sequences and time steps, but generally not for each
individual frame. In theory, such reversals of speciality occur
most frequently in the boundary region between the low-bitrate
and high-bitrate regime. While this result may sound like an
obstacle for our approach it actually also allows our model
to surpass the average performance of both baseline models.
This is apparent around seconds 10-12 and 20-22, where our
model performs best in comparison to the baselines. Finally,
note that our model is never worse than both baseline models
at the same time.

F. Computational overhead

To show that the computational overhead incurred by our
approach is low enough to fit the edge device described above,
we empirically measure the total execution time incurred by
image quality assessment and switching model inference. The
result is that execution time is on average 17 milliseconds per
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Fig. 5: Recall, precision, bitrate, RMSE, and the selection
histogram measured over time (one second sliding window
average to reduce variance) but averaged over the 10 sequences
in the test set. Recall and precision are shown for our approach
and the baseline approaches. The selection histogram indicates
the relative frequency in our approach.

1080p frame, which leaves some room on the edge device
for other AI tasks even when our approach is applied at 30
frames per second. Furthermore, note, that all neural networks
in this paper are implemented using plain PyTorch [31], and
no special inference optimizations are used, so there is still
room for improvement.

V. CONCLUSION

In this work, we considered the interaction between video
compression and video recognition in a remote recognition
system. To improve the accuracy of the AI inference in the
cloud, we proposed an edge-assisted method which switches
between different inference models trained for different video
compression qualities. In comparison to existing methods
which rely on training data augmentation and increasing model
sizes, our method does not raise cloud costs in exchange for
a small computational overhead at the edge device.

Finally, in our experiments, we show that in a scenario
simulating throughput drops in best-effort networks, overall
our method surpasses the baseline methods which do not
involve model switching.
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