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Abstract—In this paper, we propose PathRakeTCP, a method 

to estimate available bandwidth even if there are firewalls on the 

communication path that reject UDP communication. 

PathRakeTCP is one of the so-called packet train methods that 

estimates the available bandwidth by transmitting multiple 

probing packets. Firewalls often allow TCP communication to pass 

through. PathRakeTCP can pass through the firewalls because the 

packet train is composed of TCP packets. Many conventional 

packet train methods use UDP packets, which allow precise control 

over the transmission timing of each probing packet. This is 

because precise transmission timing control is essential for 

accurate available bandwidth estimation. On the other hand, if a 

packet train of TCP packets is simply transmitted, the 

transmission timing of each probing packet will be disrupted by 

TCP congestion control. This is a new problem not encountered in 

the conventional methods that use UDP packets. To solve the above 

problem, PathRakeTCP establishes a TCP connection for each 

probing packet and transmits only one packet at each TCP 

connection. To demonstrate that PathRakeTCP can precisely 

control the transmission timing of each TCP packet, an 

experimental evaluation is conducted with a real testbed. The 

experimental results show that the estimation error of 

PathRakeTCP is comparable to that of the packet train method 

with UDP packets. 

Keywords—available bandwidth estimation, packet train, TCP 

congestion control, firewall 

I. INTRODUCTION 

The COVID-19 pandemic has increased the use of online 
video conferencing applications, resulting in a trend of 
increasing network congestion [1]. It is likely that these 
applications will continue to be used even after the pandemic is 
over. Even under such circumstances, network administrators in 
universities or enterprises are required to provide a comfortable 
network environment for users. To this end, it is useful to 
periodically monitor the available bandwidth [2] (i.e., unused 
capacity of an end-to-end path) over a long period of time. The 
collected available bandwidth data can be used to identify 
congested network paths for troubleshooting when congestion 
occurs. Additionally, the data can be used for the efficient future 
renewal of network infrastructure. To monitor the available 
bandwidth, packet train methods, in which multiple probing 
packets are transmitted, are useful. One of the packet train 
methods we have developed in the past is PathQuick3 [3]. 

PathQuick3 can estimate the available bandwidth accurately, 
quickly and with low network load. Most conventional methods, 
including PathQuick3, use UDP packets to form a packet train. 
However, a firewall, which is one of the typical middleboxes [4] 
in university or enterprise networks [5], often rejects UDP 
communication [6][7]. Thus, network administrators often 
cannot monitor the available bandwidth due to the firewall. 

In this paper, we propose a packet train method, 
PathRakeTCP, which can estimate the available bandwidth even 
if there are firewalls on the communication path that reject UDP 
communication. Firewalls typically allow some TCP 
communications to pass through. PathRakeTCP can pass 
through firewalls because it configures packet trains with TCP 
packets on port numbers that are allowed to pass through. 
Network administrators, who are typical users of PathRakeTCP, 
can use it frequently to estimate network environments such as 
workplaces and cafeterias to identify where and when network 
congestion is occurring. 

Section II describes the conventional methods, Section III 
describes the problems of the conventional methods, Section IV 
outlines the PathRakeTCP mechanism by comparing it with 
PathQuick3, Section V evaluates the estimation error of 
PathRakeTCP using experiments with a real testbed, Section VI 
discusses an intrusion detection system (IDS), an intrusion 
prevention system (IPS) and PathRakeTCP and Section VII 
provides a conclusion and future work. 

 

Fig. 1. Overview of PathRakeTCP. TCP connections are established for each 
probing packet, and only one packet is transmitted on each TCP connection to 

precisely control the transmission timing of each probing packet. 
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II. CONVENTIONAL PACKET TRAIN METHODS AND THE 

CONVENTIONAL WORK OF MIDDLEBOXES 

A. Principles of Available Bandwidth Estimation in the 

Conventional Packet Train Methods 

Conventional packet train methods such as pathChirp [8], 
Pathload [9] and PathQuick3 transmit multiple probing packets 
consisting of UDP packets and estimate the available bandwidth 
based on the principle described below. 

If the probing rate at the sender of a packet train is less than 
the available bandwidth, there is no queuing delay for the 
probing packet at the router or switch that is the bottleneck on 
the communication path. Therefore, the receiving interval of the 
probing packet of the packet train at the receiver is equal to the 
transmission interval at the sender. 

However, if the probing rate exceeds the available 
bandwidth, queuing delays for the probing packets occur at the 
router or switch at the bottleneck location. As a result, the 
receiving interval of the probing packets at the receiver begins 
to be longer than the transmission interval at the sender. The 
receiver finds the probing packet at which the receiving interval 
begins to increase, and uses the probing rate of the immediately 
previous probing packet as an estimated available bandwidth. 

B. Mechanism for Estimating Available Bandwidth in 

PathQuick3 

PathQuick3 (1) linearly increases the probing rate for each 
probing packet in a single packet train; (2) finds the probing rate 
of the probing packet at which the queuing delays begin to occur, 
and uses the probing rate of the probing packet immediately 
before that point as an estimated available bandwidth. The 
mechanisms of (1) and (2) are explained below. 

(1) As shown in Fig. 2, the per-packet probing rate is linearly 
increased by keeping the transmission interval constant and by 
linearly increasing the packet size. 

(2) In Fig. 3, it is assumed that the per-packet probing rate 
exceeds the actual available bandwidth for the first time at 
probing packet 4. In this case, since no queuing delay occurs up 
to probing packet 3, the receiving interval is equal to the 
transmission interval. On the other hand, since the probing rate 
of probing packet 4 exceeds the available bandwidth for the first 
time, a queuing delay occurs at the router or switch, which is the 
bottleneck on the communication path. As a result, the receiving 
interval is longer than the transmission interval. Since probing 
packet 4 is the packet at which the receiving interval begins to 
increase for the first time, the probing rate of probing packet 3 
is used as the estimated available bandwidth. 

Note that we can adjust the maximum probable bandwidth, 
the minimum probable bandwidth and the resolution of 
estimation by changing the packet transmission interval, the 
packet size of the first probing packet, the increased amount of 
the packet size and the number of probing packets. The above 
maximum and minimum probable bandwidth and resolution can 
be derived from Equation (3) in [3], which is a formula for 
calculating the probing rate for each probing packet. 

 

Fig. 2. Linear increase in probing rate in PathQuick3. 

 

Fig. 3. Increasing the probing rate causes a queuing delay. The sender of 

PathQuick3 utilizes a single UDP socket to transmit all the probing packets. 

C. Conventional Work of Middleboxes 

A firewall and an IDS/IPS are typical middleboxes that 
inhibit communication. Most of the research on these 
middleboxes concern security issues, and few studies have 
examined the relationship between network estimation, which is 
the subject of this paper, and these middleboxes. 

First, to safely pass through a firewall, [10] proposes a trust 
model of cloud computing that can be controlled in the presence 
of firewalls without being inhibited by them. However, it is far 
from a network estimation. 

Second, to evade an IDS/IPS, [11] surveys IDS/IPS evasion 
techniques and tests each technique in a real-world environment. 
However, these evasion techniques are from the attacker’s 
perspective and do not extend to network estimation. 

Other studies related to an IDS/IPS include [12] and [13] but 
they are concerned with IDS/IPS attack detection performance 
from a security point of view and not with passing through an 
IDS/IPS. [12] used machine learning to support an IDS/IPS to 
detect distributed denial-of-service (DDoS) attacks. [13] 
proposed a method to detect TCP SYN flood attacks, a type of 
DDoS attack, by detecting anomalous traffic patterns. 

III. PROBLEMS WITH CONVENTIONAL METHODS 

A. Packet Train Methods Using UDP Packets 

Conventional packet train methods have the problem that 
they cannot pass through firewalls. As described in Section I, 
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conventional packet train methods using UDP probing packets 
cannot estimate the available bandwidth because the UDP 
probing packets are rejected by the firewall, as shown in Fig. 4. 

 

Fig. 4. The UDP packet is rejected by the firewall, and thus, the available 

bandwidth cannot be estimated. 

B. Packet Train Methods Using TCP Packets 

The conventional methods using UDP packets cannot be 
simply applied to TCP packets. The reason is, that simply 
transmitting a packet train of TCP packets similar to UDP 
packets causes a new problem not seen in the conventional 
methods, the transmission timing of each probing packet is 
disrupted by TCP congestion control. The congestion window 
size at the beginning of TCP communication is either 2, 4, or 10 
[14], and the number of probing packets exceeds the congestion 
window size because it is common for the packet train method 
to transmit several dozen or more probing packets. As shown in 
Fig. 5, when the number of probing packets sent already reaches 
the congestion window size, the next probing packet cannot be 
transmitted until the ACK packet is returned to the sender. 
Therefore, the transmission timing is disturbed by TCP 
congestion control, and thus the estimation accuracy of the 
available bandwidth is heavily degraded because the preciseness 
of the transmission timing is essential in the packet train 
methods. 

 

Fig. 5. The transmission timing of each probing packet is disrupted by the TCP 

congestion control. 

C. Available Bandwidth Estimation Methods Using TCP 

Communication 

ImTCP [15] and [16][17][18] are available bandwidth 
estimation methods using TCP communication. However, 
ImTCP requires modification of the TCP stack of OS/kernel. 
Therefore, network administrators in universities or enterprises 
cannot easily use ImTCP in an out-of-box manner. 

Note that the methods in [16][17][18] are passive 
measurement methods that capture and analyze packets from 
general users. Namely, these methods are not packet train 

 
1 The Rake in PathRakeTCP is derived from the resemblance of the shape of 

the teeth of a rake to the way probing packets are transmitted from multiple 

TCP connections in a comb-like fashion. 

methods, in which network administrators actively transmit 
probing packets to monitor the available bandwidth. 

IV. PROPOSAL OF PATHRAKETCP, AN AVAILABLE BANDWIDTH 

ESTIMATION METHOD FOR PASSING THROUGH FIREWALLS 

Here, we propose a method for estimating the available 
bandwidth, PathRakeTCP1 , which solves the following three 
problems of conventional methods: (A) passing through 
firewalls, (B) precise control of transmission timing, and (C) 
ease of use. 

For (A), the firewall can be passed through by using TCP 
communication. Network administrators have access to the 
firewall settings in the network they manage. Therefore, they 
know the TCP port numbers that can pass through their firewalls, 
and thus PathRakeTCP can use these port numbers to pass 
through firewalls and estimate the available bandwidth. 

For (B), PathRakeTCP establishes a TCP connection for 
each probing packet, and each TCP connection transmits only 
one packet. Since the congestion window size at the start of TCP 
communication is either 2, 4, or 10, the number of probing 
packets never exceeds the congestion window size, and thus the 
transmission timing of each probing packet is not affected by the 
TCP congestion control. Therefore, the transmission timing of 
each probing packet can be precisely controlled. 

Regarding (C), PathRakeTCP does not require modification 
of the TCP stack of the OS/kernel and can be implemented on 
user land and therefore can be easily used by network 
administrators in an out-of-box manner. 

In summary, to the best of our knowledge, PathRakeTCP is 
the first packet train method in the literature that can solve all 
the problems of (A), (B) and (C) above. 

We have implemented PathRakeTCP as a user land 
application using C language packages for Linux. We have used 
Cygwin [19] to work PathRakeTCP on Windows OS. 

A. Available Bandwidth Estimation Method Using Multiple 

TCP Connections 

PathRakeTCP can control the transmission timing of each 
probing packet with the same preciseness as the conventional 
UDP method. This is illustrated in Fig. 1 and Fig. 3 as a 
comparison of PathRakeTCP and PathQuick3. When a sender 
transmits multiple probing packets as a packet train, the sender 
of PathRakeTCP utilizes multiple TCP connections in Fig. 1, 
while the sender of PathQuick3 utilizes a single UDP socket in 
Fig. 3. As shown in Fig. 1, PathRakeTCP can transmit each 
probing packet at an equal transmission interval without being 
affected by TCP congestion control. This is because the number 
of probing packets does not exceed the congestion window size 
since a TCP connection is established for each packet, as 
explained in (B) at the beginning of Section IV. Therefore, 
comparing Fig. 1 and Fig. 3, it can be seen that the transmission 
of probing packets can be controlled in exactly the same way 
from the viewpoint of transmission timing. This means that 
PathRakeTCP can control the transmission timing of the TCP 
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probing packets as precisely as PathQuick3 with the UDP 
probing packets. 

V. COMPARATIVE EXPERIMENTAL EVALUATION OF ESTIMATION 

ERROR USING A REAL TESTBED 

Although PathRakeTCP and PathQuick3 use different 
transport protocols, they have the same packet train structure. 
Therefore, if PathRakeTCP can control the transmission timing 
of each probing packet with the same preciseness as PathQuick3, 
the estimation error of both methods is expected to be 
approximately the same (strictly speaking, the header size of the 
TCP and UDP packets is different but this difference has a 
negligible impact on the estimation error). Therefore, we 
conduct an experimental evaluation to compare the estimation 
error of both methods using a real testbed. 

A. Experimental Setup 

Fig. 6 shows the equipment and network topology of the real 
testbed for the comparative experimental evaluation. This 
experiment assumes a situation in which a packet train of 
PathRakeTCP or PathQuick3 is transmitted from a PC for 
sending a packet train to a PC for receiving a packet train while 
other users are communicating. The other users’ communication 
is simulated by the UDP cross-traffic transmitted from a PC for 
sending the cross-traffic to a PC for sending the cross-traffic 
using iperf (one of the standard tools for network performance 
measurement). The cross-traffic rate is 𝑐 Mbps. While varying 𝑐 
from 0 Mbps to 90 Mbps in 10 Mbps increments, the packet 
trains are transmitted, and the estimated available bandwidth is 
recorded. 

 

Fig. 6. Equipment and network topology of the real testbed for the 

comparative experimental evaluation. 

The actual available bandwidth, i.e., the ground truth, is 

Actual available bandwidth = Physical capacity at bottleneck − c(1) 

The estimation error is 

Estimation error = Actual available bandwidth − Estimated available bandwidth(2) 

We quantitatively compare PathRakeTCP with PathQuick3 
by using the mean absolute error (MAE), which is the mean of 
the estimation errors. 

MAE =
1

N
∑|(Estimation error)𝑖|

𝑁

i=1

(3) 

where N is the total number of estimations. 

The physical capacity of switching hub 1, which is the 
bottleneck point, is 100 Mbps. The reason for setting the 
physical capacity of the bottleneck at 100 Mbps in this 
experiment is that we assume that the network administrators 
provide a network environment in which the users can 
comfortably use video distribution services and video 
conferencing services (representative examples of such network 
applications and their required bandwidth are shown in Table I), 
which requires a broadband network among the various network 
applications. 

TABLE I.  BANDWIDTH REQUIRED FOR EACH NETWORK APPLICATION. 

Application name 
Required bandwidth 

(Maximum value) 

YouTube 20 Mbps [20] 

Netflix 15 Mbps [21] 

Zoom 4 Mbps [22] 

Microsoft Teams 4 Mbps [23] 

 

The transmission interval, packet size of the first packet, 
increase in packet size and number of probing packets are 0.1 
ms, 32 Bytes, 12 Bytes and 120 packets, respectively, and the 
minimum and maximum probable bandwidths calculated from 
these values are 2.6 Mbps and 116.0 Mbps, respectively (for the 
calculation method described in [3]). The reason for adopting 
these values is that the minimum and maximum probable 
bandwidth can include all the actual available bandwidths, i.e., 
10, 20, …, 100 Mbps. Another reason is to have a resolution of 
approximately 1 Mbps, which is considered sufficient for 
network administrators to monitor the available bandwidth. 

PathRakeTCP requires the same number of TCP connections 
as the number of probing packets (i.e., 120 in this case) to be 
established before transmitting the packet train. This process is 
completed instantly on the PC used to send and receive the 
packet train (Table II shows the detailed specifications), so 
PathRakeTCP can immediately transmit the packet train without 
a long waiting time for the establishment of multiple TCP 
connections (we will discuss the multiple connection 
establishment process in detail in Section VI). 

TABLE II.  THE SPEC OF THE PCS FOR TRANSMITTING AND RECEIVING 

PACKET TRAINS. 

 
PC for transmitting 

packet trains 

PC for receiving  

packet trains 

CPU 

AMD Ryzen 5 PRO 

4650G with Radeon 

Graphics 3.70 GHz 

Intel Core i5-10210U CPU 

@ 1.60 GHz 2.11 GHz 

Memory 32 GBytes 16 GBytes 

OS Windows 10 Home Windows 10 Home 

 

B. Experimental Results of Estimation Error 

Fig. 7 and Fig. 8 show the estimation results for 
PathRakeTCP and PathQuick3, respectively. Each dot in the 
figure represents the median of the estimated available 
bandwidth when varying the cross-traffic (the median value of 
five estimation runs for each cross-traffic 𝑐). When the estimated 
available bandwidth exactly matches the actual available 
bandwidth, a dot is plotted on a straight line at an angle of 45°. 

PC for receiving 

packet train

LAN cable

PC for transmitting 

packet train

PC for transmitting 

cross-traffic

PC for receiving 

cross-traffic

LAN cable
Switching 

hub 1

(100 Mbps)

Switching 

hub 2

(1 Gbps)

PathQuick3

PathRakeTCP

Cross-traffic

iperf(UDP)

Mbps

LAN cable



The shorter the distance between this diagonal line and the dot 
(the length of the two-way arrow in Fig. 7), the smaller the 
estimation error. Fig. 7 and Fig. 8 show that the estimation error 
is comparable between the two methods. 

Next, we compare the estimation errors quantitatively. We 
transmit packet trains five times for each of the 10 cross-traffic 
rates 𝑐, i.e., 50 times in total (N = 50 in Equation (3)). The MAE 
of PathRakeTCP is 15.6 Mbps (the ratio of MAE to the physical 
capacity at the bottleneck is 15.6 100⁄ = 15.6 % ) and that of 
PathQuick3 is 18.2 Mbps (the ratio of MAE to the physical 
capacity at the bottleneck is 18.2 100⁄ = 18.2 %). The MAEs of 
the two are approximately the same. This confirms that 
PathRakeTCP can precisely control the timing of the TCP packet 
transmission without being disturbed by TCP congestion control. 

VI. DISCUSSION OF AN IDS/IPS AND PATHRAKETCP 

As described in Section IV, PathRakeTCP can pass through a 
firewall. Here, we discuss the ability of PathRakeTCP to pass 
through an IDS/IPS, another typical middlebox. In the practical 
use of PathRakeTCP, since PathRakeTCP establishes many 
TCP connections, we need to consider the possibility that 
IDS/IPS may misunderstand it as a DoS/DDoS attack and reject 
the communication. However, as shown below, such a 
possibility is considered to be low because the traffic patterns of 
the PathRakeTCP and DoS/DDoS attacks can be quite different. 

Many IDSs/IPSs detect attacks by matching new packets against 
a signature database using signatures defined from the logs of 
previous attacks [11]. Therefore, the more different the traffic 
pattern of PathRakeTCP is from that of a DoS/DDoS attack, the 
less likely it is that PathRakeTCP will be misunderstood as a 
DoS/DDoS attack. The type of DoS/DDoS attack in which 
PathRakeTCP is misunderstood would be the TCP SYN flood 
attack [13], which (1) transmits many SYN packets in a short 
period of time but (2) does not return an ACK packet in the 3-
way handshake in the connection establishment process, 
resulting in leaving a large number of TCP connections half-
open. 

The traffic pattern of PathRakeTCP can be quite different 
from that of a TCP SYN flood attack as follows. First, when 
PathRakeTCP starts to establish the same number of TCP 
connections as the number of probing packets between a sender 
and a receiver, instead of transmitting all SYN packets at the 
same time, the sender inserts a small amount of waiting time 
between transmitting each SYN packet. By setting the waiting 
time longer than the duration, the IDS/IPS will not 
misunderstand as a TCP SYN flood attack, and the above (1) can 
be prevented. Network administrators have access to the 
IDS/IPS settings in the network they manage. Therefore, they 
know the appropriate waiting time based on the IDS/IPS settings. 
Next, because the sender returns an ACK packet immediately 
after receiving the SYN-ACK packet from the receiver in the 3-
way handshake, the above (2) can be prevented. 

Furthermore, PathRakeTCP is unlikely to be misunderstood 
as a DDoS attack from the viewpoint of IP address spoofing, 
since the IP address is the same for all the packets and is not a 
spoofed IP address. 

  

Fig. 7. Estimation results of PathRakeTCP. 

  

Fig. 8. Estimation results of PathQuick3. 

VII. CONCLUSION AND FUTURE WORK 

In this paper we propose PathRakeTCP, which can estimate 
the available bandwidth even if there is a firewall on the 
communication path that rejects UDP communication. 
PathRakeTCP establishes a TCP connection for each probing 
packet in the packet train and transmits only one packet on each 
TCP connection. 

The main research contributions of this paper are threefold: 

(1) Firewalls often allow TCP communications to pass through, 
and PathRakeTCP can pass through the firewalls because it 
consists of TCP packets in a packet train. 
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(2) Since a TCP connection is established for each probing 
packet, the transmission timing of each probing packet is not 
disrupted by the TCP congestion control, and hence 
PathRakeTCP can precisely control the transmission timing of 
each probing packet. 

(3) The TCP stack in the OS/kernel does not need to be modified, 
and PathRakeTCP can be implemented on user land, making it 
easy to use in an out-of-box manner. 

To the best of our knowledge, PathRakeTCP is the first 
packet train method in the literature that has all the advantages 
of (1), (2) and (3) above. 

To demonstrate that PathRakeTCP can precisely control the 
transmission timing of each probing packet, we evaluate the 
estimation error of PathRakeTCP using a real testbed. As a result, 
the estimation error of PathRakeTCP is approximately the same 
as that of PathQuick3, a packet train method for UDP probing 
packets that we have developed in the past, and thus, we confirm 
that PathRakeTCP can precisely control the transmission timing 
of each TCP probing packet. 

Although a fully wired network was used in our real testbed, 
wireless networks, e.g., wireless LAN (Wi-Fi), are widely used 
in modern campus and enterprise networks. Additionally, 
preliminary experimentation results with a small testbed are 
shown in this paper. Also, the baseline method in this paper, 
PathQuick3, is the method that we have developed in the past. 
Therefore, in future work, we will conduct large-scale 
experiments over wireless campus and enterprise networks to 
compare the estimation accuracy of the various packet train 
methods developed by third-party research groups and 
PathRakeTCP. 

Our investigation into the complex behavior of firewalls 
(such as stateful and deep packet inspection [24]), IDSs/IPSs, 
and other types of middleboxes is still in progress. Additionally, 
we have not yet confirmed that PathRakeTCP can pass through 
operational middleboxes in the wild. Consequently, we also plan 
to conduct large-scale experiments over operational campus and 
enterprise networks to confirm that PathRakeTCP can pass 
through various types of firewalls, IDS/IPS and other types of 
middleboxes. 
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