

PathRakeTCP: Available Bandwidth Estimation

Using Multiple TCP Connections

for Passing through Firewalls

Naoyuki Ito

Nagoya University

Japan

Takashi Oshiba

NEC Corporation

Japan

Kozo Satoda

NEC Corporation

Japan

Tutomu Murase

Nagoya University

Japan

Abstract—In this paper, we propose PathRakeTCP, a method

to estimate available bandwidth even if there are firewalls on the

communication path that reject UDP communication.

PathRakeTCP is one of the so-called packet train methods that

estimates the available bandwidth by transmitting multiple

probing packets. Firewalls often allow TCP communication to pass

through. PathRakeTCP can pass through the firewalls because the

packet train is composed of TCP packets. Many conventional

packet train methods use UDP packets, which allow precise control

over the transmission timing of each probing packet. This is

because precise transmission timing control is essential for

accurate available bandwidth estimation. On the other hand, if a

packet train of TCP packets is simply transmitted, the

transmission timing of each probing packet will be disrupted by

TCP congestion control. This is a new problem not encountered in

the conventional methods that use UDP packets. To solve the above

problem, PathRakeTCP establishes a TCP connection for each

probing packet and transmits only one packet at each TCP

connection. To demonstrate that PathRakeTCP can precisely

control the transmission timing of each TCP packet, an

experimental evaluation is conducted with a real testbed. The

experimental results show that the estimation error of

PathRakeTCP is comparable to that of the packet train method

with UDP packets.

Keywords—available bandwidth estimation, packet train, TCP

congestion control, firewall

I. INTRODUCTION

The COVID-19 pandemic has increased the use of online
video conferencing applications, resulting in a trend of
increasing network congestion [1]. It is likely that these
applications will continue to be used even after the pandemic is
over. Even under such circumstances, network administrators in
universities or enterprises are required to provide a comfortable
network environment for users. To this end, it is useful to
periodically monitor the available bandwidth [2] (i.e., unused
capacity of an end-to-end path) over a long period of time. The
collected available bandwidth data can be used to identify
congested network paths for troubleshooting when congestion
occurs. Additionally, the data can be used for the efficient future
renewal of network infrastructure. To monitor the available
bandwidth, packet train methods, in which multiple probing
packets are transmitted, are useful. One of the packet train
methods we have developed in the past is PathQuick3 [3].

PathQuick3 can estimate the available bandwidth accurately,
quickly and with low network load. Most conventional methods,
including PathQuick3, use UDP packets to form a packet train.
However, a firewall, which is one of the typical middleboxes [4]
in university or enterprise networks [5], often rejects UDP
communication [6][7]. Thus, network administrators often
cannot monitor the available bandwidth due to the firewall.

In this paper, we propose a packet train method,
PathRakeTCP, which can estimate the available bandwidth even
if there are firewalls on the communication path that reject UDP
communication. Firewalls typically allow some TCP
communications to pass through. PathRakeTCP can pass
through firewalls because it configures packet trains with TCP
packets on port numbers that are allowed to pass through.
Network administrators, who are typical users of PathRakeTCP,
can use it frequently to estimate network environments such as
workplaces and cafeterias to identify where and when network
congestion is occurring.

Section II describes the conventional methods, Section III
describes the problems of the conventional methods, Section IV
outlines the PathRakeTCP mechanism by comparing it with
PathQuick3, Section V evaluates the estimation error of
PathRakeTCP using experiments with a real testbed, Section VI
discusses an intrusion detection system (IDS), an intrusion
prevention system (IPS) and PathRakeTCP and Section VII
provides a conclusion and future work.

Fig. 1. Overview of PathRakeTCP. TCP connections are established for each
probing packet, and only one packet is transmitted on each TCP connection to

precisely control the transmission timing of each probing packet.

Sender Receiver

TCP Connection1

Every transmission interval is equal

Probing packet 1

TCP Connection2

TCP Connection3

TCP Connection4

TCP Connection5

TCP Connection1

TCP Connection2

TCP Connection3

TCP Connection4

TCP Connection5

Probing packet 2

Probing packet 3

Probing packet 4

Probing packet 5

II. CONVENTIONAL PACKET TRAIN METHODS AND THE

CONVENTIONAL WORK OF MIDDLEBOXES

A. Principles of Available Bandwidth Estimation in the

Conventional Packet Train Methods

Conventional packet train methods such as pathChirp [8],
Pathload [9] and PathQuick3 transmit multiple probing packets
consisting of UDP packets and estimate the available bandwidth
based on the principle described below.

If the probing rate at the sender of a packet train is less than
the available bandwidth, there is no queuing delay for the
probing packet at the router or switch that is the bottleneck on
the communication path. Therefore, the receiving interval of the
probing packet of the packet train at the receiver is equal to the
transmission interval at the sender.

However, if the probing rate exceeds the available
bandwidth, queuing delays for the probing packets occur at the
router or switch at the bottleneck location. As a result, the
receiving interval of the probing packets at the receiver begins
to be longer than the transmission interval at the sender. The
receiver finds the probing packet at which the receiving interval
begins to increase, and uses the probing rate of the immediately
previous probing packet as an estimated available bandwidth.

B. Mechanism for Estimating Available Bandwidth in

PathQuick3

PathQuick3 (1) linearly increases the probing rate for each
probing packet in a single packet train; (2) finds the probing rate
of the probing packet at which the queuing delays begin to occur,
and uses the probing rate of the probing packet immediately
before that point as an estimated available bandwidth. The
mechanisms of (1) and (2) are explained below.

(1) As shown in Fig. 2, the per-packet probing rate is linearly
increased by keeping the transmission interval constant and by
linearly increasing the packet size.

(2) In Fig. 3, it is assumed that the per-packet probing rate
exceeds the actual available bandwidth for the first time at
probing packet 4. In this case, since no queuing delay occurs up
to probing packet 3, the receiving interval is equal to the
transmission interval. On the other hand, since the probing rate
of probing packet 4 exceeds the available bandwidth for the first
time, a queuing delay occurs at the router or switch, which is the
bottleneck on the communication path. As a result, the receiving
interval is longer than the transmission interval. Since probing
packet 4 is the packet at which the receiving interval begins to
increase for the first time, the probing rate of probing packet 3
is used as the estimated available bandwidth.

Note that we can adjust the maximum probable bandwidth,
the minimum probable bandwidth and the resolution of
estimation by changing the packet transmission interval, the
packet size of the first probing packet, the increased amount of
the packet size and the number of probing packets. The above
maximum and minimum probable bandwidth and resolution can
be derived from Equation (3) in [3], which is a formula for
calculating the probing rate for each probing packet.

Fig. 2. Linear increase in probing rate in PathQuick3.

Fig. 3. Increasing the probing rate causes a queuing delay. The sender of

PathQuick3 utilizes a single UDP socket to transmit all the probing packets.

C. Conventional Work of Middleboxes

A firewall and an IDS/IPS are typical middleboxes that
inhibit communication. Most of the research on these
middleboxes concern security issues, and few studies have
examined the relationship between network estimation, which is
the subject of this paper, and these middleboxes.

First, to safely pass through a firewall, [10] proposes a trust
model of cloud computing that can be controlled in the presence
of firewalls without being inhibited by them. However, it is far
from a network estimation.

Second, to evade an IDS/IPS, [11] surveys IDS/IPS evasion
techniques and tests each technique in a real-world environment.
However, these evasion techniques are from the attacker’s
perspective and do not extend to network estimation.

Other studies related to an IDS/IPS include [12] and [13] but
they are concerned with IDS/IPS attack detection performance
from a security point of view and not with passing through an
IDS/IPS. [12] used machine learning to support an IDS/IPS to
detect distributed denial-of-service (DDoS) attacks. [13]
proposed a method to detect TCP SYN flood attacks, a type of
DDoS attack, by detecting anomalous traffic patterns.

III. PROBLEMS WITH CONVENTIONAL METHODS

A. Packet Train Methods Using UDP Packets

Conventional packet train methods have the problem that
they cannot pass through firewalls. As described in Section I,

Sender Receiver

Linear increase in probing rate

for each probing packet

Packet size: linearly increasing

Every transmission interval is equal

Sender Receiver

Queuing delays

begin to occur

Receiving interval

equals

transmission interval

Probing packet 1

Probing packet 2

Probing packet 3

Probing packet 4

Probing packet 5

Every transmission interval is equal

conventional packet train methods using UDP probing packets
cannot estimate the available bandwidth because the UDP
probing packets are rejected by the firewall, as shown in Fig. 4.

Fig. 4. The UDP packet is rejected by the firewall, and thus, the available

bandwidth cannot be estimated.

B. Packet Train Methods Using TCP Packets

The conventional methods using UDP packets cannot be
simply applied to TCP packets. The reason is, that simply
transmitting a packet train of TCP packets similar to UDP
packets causes a new problem not seen in the conventional
methods, the transmission timing of each probing packet is
disrupted by TCP congestion control. The congestion window
size at the beginning of TCP communication is either 2, 4, or 10
[14], and the number of probing packets exceeds the congestion
window size because it is common for the packet train method
to transmit several dozen or more probing packets. As shown in
Fig. 5, when the number of probing packets sent already reaches
the congestion window size, the next probing packet cannot be
transmitted until the ACK packet is returned to the sender.
Therefore, the transmission timing is disturbed by TCP
congestion control, and thus the estimation accuracy of the
available bandwidth is heavily degraded because the preciseness
of the transmission timing is essential in the packet train
methods.

Fig. 5. The transmission timing of each probing packet is disrupted by the TCP

congestion control.

C. Available Bandwidth Estimation Methods Using TCP

Communication

ImTCP [15] and [16][17][18] are available bandwidth
estimation methods using TCP communication. However,
ImTCP requires modification of the TCP stack of OS/kernel.
Therefore, network administrators in universities or enterprises
cannot easily use ImTCP in an out-of-box manner.

Note that the methods in [16][17][18] are passive
measurement methods that capture and analyze packets from
general users. Namely, these methods are not packet train

1 The Rake in PathRakeTCP is derived from the resemblance of the shape of

the teeth of a rake to the way probing packets are transmitted from multiple

TCP connections in a comb-like fashion.

methods, in which network administrators actively transmit
probing packets to monitor the available bandwidth.

IV. PROPOSAL OF PATHRAKETCP, AN AVAILABLE BANDWIDTH

ESTIMATION METHOD FOR PASSING THROUGH FIREWALLS

Here, we propose a method for estimating the available
bandwidth, PathRakeTCP1 , which solves the following three
problems of conventional methods: (A) passing through
firewalls, (B) precise control of transmission timing, and (C)
ease of use.

For (A), the firewall can be passed through by using TCP
communication. Network administrators have access to the
firewall settings in the network they manage. Therefore, they
know the TCP port numbers that can pass through their firewalls,
and thus PathRakeTCP can use these port numbers to pass
through firewalls and estimate the available bandwidth.

For (B), PathRakeTCP establishes a TCP connection for
each probing packet, and each TCP connection transmits only
one packet. Since the congestion window size at the start of TCP
communication is either 2, 4, or 10, the number of probing
packets never exceeds the congestion window size, and thus the
transmission timing of each probing packet is not affected by the
TCP congestion control. Therefore, the transmission timing of
each probing packet can be precisely controlled.

Regarding (C), PathRakeTCP does not require modification
of the TCP stack of the OS/kernel and can be implemented on
user land and therefore can be easily used by network
administrators in an out-of-box manner.

In summary, to the best of our knowledge, PathRakeTCP is
the first packet train method in the literature that can solve all
the problems of (A), (B) and (C) above.

We have implemented PathRakeTCP as a user land
application using C language packages for Linux. We have used
Cygwin [19] to work PathRakeTCP on Windows OS.

A. Available Bandwidth Estimation Method Using Multiple

TCP Connections

PathRakeTCP can control the transmission timing of each
probing packet with the same preciseness as the conventional
UDP method. This is illustrated in Fig. 1 and Fig. 3 as a
comparison of PathRakeTCP and PathQuick3. When a sender
transmits multiple probing packets as a packet train, the sender
of PathRakeTCP utilizes multiple TCP connections in Fig. 1,
while the sender of PathQuick3 utilizes a single UDP socket in
Fig. 3. As shown in Fig. 1, PathRakeTCP can transmit each
probing packet at an equal transmission interval without being
affected by TCP congestion control. This is because the number
of probing packets does not exceed the congestion window size
since a TCP connection is established for each packet, as
explained in (B) at the beginning of Section IV. Therefore,
comparing Fig. 1 and Fig. 3, it can be seen that the transmission
of probing packets can be controlled in exactly the same way
from the viewpoint of transmission timing. This means that
PathRakeTCP can control the transmission timing of the TCP

Rejected by firewall

Probing packet

(UDP)

Sender Receiver

Probing packet

ACK
Congestion window size

Waiting for

the ACK

probing packets as precisely as PathQuick3 with the UDP
probing packets.

V. COMPARATIVE EXPERIMENTAL EVALUATION OF ESTIMATION

ERROR USING A REAL TESTBED

Although PathRakeTCP and PathQuick3 use different
transport protocols, they have the same packet train structure.
Therefore, if PathRakeTCP can control the transmission timing
of each probing packet with the same preciseness as PathQuick3,
the estimation error of both methods is expected to be
approximately the same (strictly speaking, the header size of the
TCP and UDP packets is different but this difference has a
negligible impact on the estimation error). Therefore, we
conduct an experimental evaluation to compare the estimation
error of both methods using a real testbed.

A. Experimental Setup

Fig. 6 shows the equipment and network topology of the real
testbed for the comparative experimental evaluation. This
experiment assumes a situation in which a packet train of
PathRakeTCP or PathQuick3 is transmitted from a PC for
sending a packet train to a PC for receiving a packet train while
other users are communicating. The other users’ communication
is simulated by the UDP cross-traffic transmitted from a PC for
sending the cross-traffic to a PC for sending the cross-traffic
using iperf (one of the standard tools for network performance
measurement). The cross-traffic rate is 𝑐 Mbps. While varying 𝑐
from 0 Mbps to 90 Mbps in 10 Mbps increments, the packet
trains are transmitted, and the estimated available bandwidth is
recorded.

Fig. 6. Equipment and network topology of the real testbed for the

comparative experimental evaluation.

The actual available bandwidth, i.e., the ground truth, is

Actual available bandwidth = Physical capacity at bottleneck − c(1)

The estimation error is

Estimation error = Actual available bandwidth − Estimated available bandwidth(2)

We quantitatively compare PathRakeTCP with PathQuick3
by using the mean absolute error (MAE), which is the mean of
the estimation errors.

MAE =
1

N
∑|(Estimation error)𝑖|

𝑁

i=1

(3)

where N is the total number of estimations.

The physical capacity of switching hub 1, which is the
bottleneck point, is 100 Mbps. The reason for setting the
physical capacity of the bottleneck at 100 Mbps in this
experiment is that we assume that the network administrators
provide a network environment in which the users can
comfortably use video distribution services and video
conferencing services (representative examples of such network
applications and their required bandwidth are shown in Table I),
which requires a broadband network among the various network
applications.

TABLE I. BANDWIDTH REQUIRED FOR EACH NETWORK APPLICATION.

Application name
Required bandwidth

(Maximum value)

YouTube 20 Mbps [20]

Netflix 15 Mbps [21]

Zoom 4 Mbps [22]

Microsoft Teams 4 Mbps [23]

The transmission interval, packet size of the first packet,
increase in packet size and number of probing packets are 0.1
ms, 32 Bytes, 12 Bytes and 120 packets, respectively, and the
minimum and maximum probable bandwidths calculated from
these values are 2.6 Mbps and 116.0 Mbps, respectively (for the
calculation method described in [3]). The reason for adopting
these values is that the minimum and maximum probable
bandwidth can include all the actual available bandwidths, i.e.,
10, 20, …, 100 Mbps. Another reason is to have a resolution of
approximately 1 Mbps, which is considered sufficient for
network administrators to monitor the available bandwidth.

PathRakeTCP requires the same number of TCP connections
as the number of probing packets (i.e., 120 in this case) to be
established before transmitting the packet train. This process is
completed instantly on the PC used to send and receive the
packet train (Table II shows the detailed specifications), so
PathRakeTCP can immediately transmit the packet train without
a long waiting time for the establishment of multiple TCP
connections (we will discuss the multiple connection
establishment process in detail in Section VI).

TABLE II. THE SPEC OF THE PCS FOR TRANSMITTING AND RECEIVING

PACKET TRAINS.

PC for transmitting

packet trains

PC for receiving

packet trains

CPU

AMD Ryzen 5 PRO

4650G with Radeon

Graphics 3.70 GHz

Intel Core i5-10210U CPU

@ 1.60 GHz 2.11 GHz

Memory 32 GBytes 16 GBytes

OS Windows 10 Home Windows 10 Home

B. Experimental Results of Estimation Error

Fig. 7 and Fig. 8 show the estimation results for
PathRakeTCP and PathQuick3, respectively. Each dot in the
figure represents the median of the estimated available
bandwidth when varying the cross-traffic (the median value of
five estimation runs for each cross-traffic 𝑐). When the estimated
available bandwidth exactly matches the actual available
bandwidth, a dot is plotted on a straight line at an angle of 45°.

PC for receiving

packet train

LAN cable

PC for transmitting

packet train

PC for transmitting

cross-traffic

PC for receiving

cross-traffic

LAN cable
Switching

hub 1

(100 Mbps)

Switching

hub 2

(1 Gbps)

PathQuick3

PathRakeTCP

Cross-traffic

iperf(UDP)

Mbps

LAN cable

The shorter the distance between this diagonal line and the dot
(the length of the two-way arrow in Fig. 7), the smaller the
estimation error. Fig. 7 and Fig. 8 show that the estimation error
is comparable between the two methods.

Next, we compare the estimation errors quantitatively. We
transmit packet trains five times for each of the 10 cross-traffic
rates 𝑐, i.e., 50 times in total (N = 50 in Equation (3)). The MAE
of PathRakeTCP is 15.6 Mbps (the ratio of MAE to the physical
capacity at the bottleneck is 15.6 100⁄ = 15.6 %) and that of
PathQuick3 is 18.2 Mbps (the ratio of MAE to the physical
capacity at the bottleneck is 18.2 100⁄ = 18.2 %). The MAEs of
the two are approximately the same. This confirms that
PathRakeTCP can precisely control the timing of the TCP packet
transmission without being disturbed by TCP congestion control.

VI. DISCUSSION OF AN IDS/IPS AND PATHRAKETCP

As described in Section IV, PathRakeTCP can pass through a
firewall. Here, we discuss the ability of PathRakeTCP to pass
through an IDS/IPS, another typical middlebox. In the practical
use of PathRakeTCP, since PathRakeTCP establishes many
TCP connections, we need to consider the possibility that
IDS/IPS may misunderstand it as a DoS/DDoS attack and reject
the communication. However, as shown below, such a
possibility is considered to be low because the traffic patterns of
the PathRakeTCP and DoS/DDoS attacks can be quite different.

Many IDSs/IPSs detect attacks by matching new packets against
a signature database using signatures defined from the logs of
previous attacks [11]. Therefore, the more different the traffic
pattern of PathRakeTCP is from that of a DoS/DDoS attack, the
less likely it is that PathRakeTCP will be misunderstood as a
DoS/DDoS attack. The type of DoS/DDoS attack in which
PathRakeTCP is misunderstood would be the TCP SYN flood
attack [13], which (1) transmits many SYN packets in a short
period of time but (2) does not return an ACK packet in the 3-
way handshake in the connection establishment process,
resulting in leaving a large number of TCP connections half-
open.

The traffic pattern of PathRakeTCP can be quite different
from that of a TCP SYN flood attack as follows. First, when
PathRakeTCP starts to establish the same number of TCP
connections as the number of probing packets between a sender
and a receiver, instead of transmitting all SYN packets at the
same time, the sender inserts a small amount of waiting time
between transmitting each SYN packet. By setting the waiting
time longer than the duration, the IDS/IPS will not
misunderstand as a TCP SYN flood attack, and the above (1) can
be prevented. Network administrators have access to the
IDS/IPS settings in the network they manage. Therefore, they
know the appropriate waiting time based on the IDS/IPS settings.
Next, because the sender returns an ACK packet immediately
after receiving the SYN-ACK packet from the receiver in the 3-
way handshake, the above (2) can be prevented.

Furthermore, PathRakeTCP is unlikely to be misunderstood
as a DDoS attack from the viewpoint of IP address spoofing,
since the IP address is the same for all the packets and is not a
spoofed IP address.

Fig. 7. Estimation results of PathRakeTCP.

Fig. 8. Estimation results of PathQuick3.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose PathRakeTCP, which can estimate
the available bandwidth even if there is a firewall on the
communication path that rejects UDP communication.
PathRakeTCP establishes a TCP connection for each probing
packet in the packet train and transmits only one packet on each
TCP connection.

The main research contributions of this paper are threefold:

(1) Firewalls often allow TCP communications to pass through,
and PathRakeTCP can pass through the firewalls because it
consists of TCP packets in a packet train.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

M
ed

ia
n

 o
f

 5
 e

st
im

at
ed

 a
v

ai
la

b
le

 b
an

d
w

id
th

s
(M

b
p

s)

Actual available bandwidth (Mbps)

 =10

 =20

 =30

 =90

 =40
 =50 =70

 =80

Estimation error

 =60

Cross-traffic

 =0 Mbps

0

20

40

60

80

100

120

0 20 40 60 80 100 120

M
ed

ia
n

 o
f

 5
 e

st
im

at
ed

 a
v

ai
la

b
le

 b
an

d
w

id
th

s
(M

b
p

s)

Actual available bandwidth (Mbps)

 =10

 =20
 =30

 =40

 =50

 =60
 =70

 =80
 =90

Cross-traffic

 =0 Mbps

(2) Since a TCP connection is established for each probing
packet, the transmission timing of each probing packet is not
disrupted by the TCP congestion control, and hence
PathRakeTCP can precisely control the transmission timing of
each probing packet.

(3) The TCP stack in the OS/kernel does not need to be modified,
and PathRakeTCP can be implemented on user land, making it
easy to use in an out-of-box manner.

To the best of our knowledge, PathRakeTCP is the first
packet train method in the literature that has all the advantages
of (1), (2) and (3) above.

To demonstrate that PathRakeTCP can precisely control the
transmission timing of each probing packet, we evaluate the
estimation error of PathRakeTCP using a real testbed. As a result,
the estimation error of PathRakeTCP is approximately the same
as that of PathQuick3, a packet train method for UDP probing
packets that we have developed in the past, and thus, we confirm
that PathRakeTCP can precisely control the transmission timing
of each TCP probing packet.

Although a fully wired network was used in our real testbed,
wireless networks, e.g., wireless LAN (Wi-Fi), are widely used
in modern campus and enterprise networks. Additionally,
preliminary experimentation results with a small testbed are
shown in this paper. Also, the baseline method in this paper,
PathQuick3, is the method that we have developed in the past.
Therefore, in future work, we will conduct large-scale
experiments over wireless campus and enterprise networks to
compare the estimation accuracy of the various packet train
methods developed by third-party research groups and
PathRakeTCP.

Our investigation into the complex behavior of firewalls
(such as stateful and deep packet inspection [24]), IDSs/IPSs,
and other types of middleboxes is still in progress. Additionally,
we have not yet confirmed that PathRakeTCP can pass through
operational middleboxes in the wild. Consequently, we also plan
to conduct large-scale experiments over operational campus and
enterprise networks to confirm that PathRakeTCP can pass
through various types of firewalls, IDS/IPS and other types of
middleboxes.

REFERENCES

[1] M. S. Elsayed, N. A. Le-Khac, and A. D. Jurcut, “Dealing with COVID-
19 network traffic spikes,” IEEE Security & Privacy, Vol. 19, Issue 1, pp.
90–94, 2021.

[2] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth estimation:
Metrics, measurement techniques, and tools,” IEEE Network, Vol. 17,
Issue 6, pp. 27–35, 2003.

[3] T. Oshiba, K. Nogami, K. Nihei, and K. Satoda, “Robust available
bandwidth estimation against dynamic behavior of packet scheduler in
operational LTE networks,” IEEE Symposium on Computers and
Communication (ISCC), pp. 1276–1283, 2016.

[4] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” IETF
RFC 3234, 2002.

[5] J. Sherry and S. Ratnasamy, “A survey of enterprise middlebox
deployments,” Technical Report, UCB/EECS-2012-24, University of
California at Berkeley, 2012.

[6] T. Reddy, P. Patil, D. Wing, and B. V. Steeg, “WebRTC UDP firewall
traversal,” IAB Workshop on Stack Evolution in a Middlebox Internet
(SEMI), 2015.

[7] H. Y. Yang, K. H. Lee, and S. J. Ko, “Communication quality of voice
over TCP used for firewall traversal,” IEEE International Conference on
Multimedia and Expo (ICME), pp. 29–32, 2008.

[8] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell,
“pathChirp: Efficient available bandwidth estimation for network paths,”
Passive and Active Measurement (PAM) workshop, 2003.

[9] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput,” ACM
SIGCOMM, pp. 295–308, 2002.

[10] Z. Yang, L. Qiao, C. Liu, C. Yang, and G. Wan, “A collaborative trust
model of firewall-through based on cloud computing,” International
Conference on Computer Supported Cooperative Work in Design
(CSCWD), pp. 329–334, 2010.

[11] H. Kılıç, N. S. Katal, and A. A. Selçuk, “Evasion techniques efficiency
over the IPS/IDS technology,” International Conference on Computer
Science and Engineering (UBMK), pp. 542–547, 2019.

[12] J. D. Ndibwile, A. Govardhan, K. Okada, and Y. Kadobayashi, “Web
server protection against application layer DDoS attacks using machine
learning and traffic authentication,” IEEE Annual Computer Software and
Applications Conference (COMPSAC), pp. 261–267, 2015.

[13] S. H. C. Haris, R. B. Ahmad, and M. A. H. A. Ghani, “Detecting TCP
SYN flood attack based on anomaly detection,” International Conference
on Network Applications, Protocols and Services (NETAPPS), pp. 240–
244, 2010.

[14] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing TCP’s initial
window,” IETF RFC 6928, 2013.

[15] C. L. T. Man, G. Hasegawa, and M. Murata, “ImTCP: TCP with an inline
measurement mechanism for available bandwidth,” Computer
Communications (COMCOM), pp. 1614–1626, 2006.

[16] F. Ciaccia, I. Romero, O. A. Abella, D. Montero, R. S. Gracià, and M.
Nemirovsky, “SABES: Statistical available bandwidth estimation from
passive TCP measurements,” IFIP Networking Conference, pp. 743–748,
2020.

[17] S. K. Khangura and M. Fidler, “Available bandwidth estimation from
passive TCP measurements using the probe gap model,” IFIP Networking
Conference and Workshops, pp. 1–9, 2017.

[18] M. Zangrilli and B. B. Lowekamp, “Applying principles of active
available bandwidth algorithms to passive TCP traces,” International
Workshop on Passive and Active Network Measurement (PAM), pp. 333–
336, 2005.

[19] Cygwin, “Cygwin. Get that Linux feeling - on Windows,”
https://www.cygwin.com/, (accessed in November 8, 2022).

[20] Google, “System requirements,” (in Japanese) [online]
https://support.google.com/youtube/answer/78358?hl=ja, (accessed in
April 15, 2022).

[21] Netflix, “Internet connection speed recommendations,” (in Japanese)
[online] https://help.netflix.com/ja/node/306, (accessed in April 15, 2022).

[22] Zoom, “Zoom system requirements: Windows, macOS, Linux,”
https://support.zoom.us/hc/en-us/articles/201362023-Zoom-system-
requirements-Windows-macOS-Linux, (accessed in April 15, 2022).

[23] Microsoft, “Prepare your organization's network for Microsoft Teams,”
(in Japanese) [online] https://docs.microsoft.com/ja-
jp/microsoftteams/prepare-network, (accessed in April 15, 2022).

[24] Y. Guo, C. Wang, and X. Jia, “Enabling secure and dynamic deep packet
inspection in outsourced middleboxes,” International Workshop on
Security in Cloud Computing (SCC), ACM, pp. 49–55, 2018.

